如何计算句子相似度?

句子相似度的计算方法有

1.欧氏距离:多维空间两个点的绝对距离

2.余弦相似度:用两个向量的夹角的余弦值来衡量相似度,首先对句子做embedding再计算两个句子或文本的相似度,更注重方  向上的差异

3.TF-IDF:从词频率的角度出发计算一个词在一个文档和所有文档的频率

4.doc2vec,word2vec:用来创建词向量的模型,doc2vec是word2vec的扩展,可以计算单个词到句子到文章的相似度。

 

计算公式:

1.欧式距离公式:

2.余弦相似度

3.TF-IDF

 

4.word2vec

 

 

优缺点比较:

 

 

实现方式:

 

 

 

word2vec: trained_model.similarity('woman', 'man') 

doc2vec可以参考例子:https://kanoki.org/2019/03/07/sentence-similarity-in-python-using-doc2vec/

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值