论文学习:Context-Aware Crowd Counting

本文介绍了CVPR 2019上的一篇论文,研究了如何在计算机视觉中解决人群计数的挑战。作者提出了Context-Aware Crowd Counting (CAN) 网络,通过多尺度上下文特征提取和几何引导的学习,有效处理快速尺度变化和透视失真问题。论文详细阐述了网络结构、训练细节和损失函数,并提供了实验结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CAN

Context-Aware Crowd Counting

CVPR 2019

洛桑联邦理工学院

论文:https://arxiv.org/pdf/1811.10452.pdf

代码:https://github.com/weizheliu/Context-Aware-Crowd-Counting

image-20201109160350317

Instruction

作者提出了一种end2end的网络,它可以在多个感受野(尺度)下进行特征提取,并且学习图像中的重要特征,从而解决快速尺度变化问题。

这篇文章是直接将多尺度的上下文信息整合到这个end2end的网络中,使其在每个图像位置能够利用到正确的上下文。

Scale-Aware Contextual Features

这些带有尺度信息和上下文信息的featrue map是怎么得到的呢?

网络的前10层用的是预训练好的VGG16的前10层,输出的特征图为

image-20201109161127684

F v g g \mathcal{F}_{vgg} Fvgg的局限性在于它在整个图像上编码相同的感受野。为了解决这个问题,作者通过执行Spatial Pyramid Pooling从VGG特征中提取多尺度上下文信息来计算scale-aware特征。

image-20201109160704561

s j s_j sj:最终得到的featrue map

j j j:尺度

θ \theta θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值