Pytorch-Torch

本文详细介绍了PyTorch框架中torch包的核心张量操作,包括随机数生成、张量构造、张量变形、张量聚合及张量极值获取等。通过丰富的实例帮助读者快速掌握这些基础功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Torch

pytorch深度学习框架最重要的包torch

相关介绍

torch 官方文档说明如下:

The torch package contains data structures for multi-dimensional tensors and defines mathematical operations over these tensors. Additionally, it provides many utilities for efficient serializing of Tensors and arbitrary types, and other useful utilities.

句句不离tensor,可知torch是包含了多维张量的数据结构以及对张量的多种数学操作,还提供了更加有效地对张量和任意类型进行序列化的工具。

基本操作

简单介绍几个目前自己看项目看到的。之后会补充

torch.rand

torch.rand(*size, out=None)  -> Tensor

返回一个张量,包含从区间[0,1)的均匀分布中抽取的一组随机数,形状由可变参数size(int...)决定。

  • 例子
>>> torch.rand(2, 3)
tensor([[0.1183, 0.5954, 0.0256],
       [0.1915, 0.2350, 0.4634]])
        
>>> torch.rand(4)
tensor([0.4275, 0.2355, 0.1684, 0.3253])
  • torch.rand相似的是torch.randn,不同之处是张量包含了从标准正态分布(均值为0,方差为1,即高斯白噪声)中抽取一组随机数

torch.zeros

torch.zeros(*sizes, out=None) → Tensor

返回一个全为标量0的张量,形状由sizes(int...)定义

  • 例子
>>> torch.zeros(3, 4)
tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.]])

torch.gather

torch.gather(input, dim, index, out=None) → Tensor

沿给定轴dim,将输入索引张量index指定位置的值进行聚合

对于一个3维张量,输出可以定义为:

out[i][j][k] = tensor[index[i][j][k]][j][k]  # dim=0
out[i][j][k] = tensor[i][index[i][j][k]][k]  # dim=1
out[i][j][k] = tensor[i][j][index[i][j][k]]  # dim=3
  • 例子
>>> torch.gather(t, 1, torch.LongTensor([[0, 0],[1, 0]]))
tensor([[1., 1.],
        [4., 3.]])
  • 过程图示(刚开始接触,确实很难理解。。。。)
    在这里插入图片描述

torch.view

表示将原矩阵转化成ij列的形式,i为-1表示不限制行数,j为-1表示不限制列数

  • 例子

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值