概述
HashMap是基于哈希表的 Map 接口的实现的。是一种典型的Key-Vlaue,允许使用null值和null键,HashMap不保证映射顺序,不保证顺序恒久不变。非线程安全。
继承体系
Serializable:启用其序列化功能,该接口没有方法和字段,仅用于表示可序列化的语义。
Cloneable:启用字段复制,指示Object.clone()方法可以合法地对该类实例进行按字段复制。
AbstractMap:提供了map集合的基本实现。
Map:HashMap的抽象接口。
数据结构
HashMap使用的是数组+联保+红黑树的方式实现的数据存储。
存储过程(简略版):根据key计算的hash值和数组长度-1的值进行二进制计算,得出一个数组下标,将value存放当中。当该位置有值,则进行链表化。当链表达到阈值,则将链表进行树化。当树结构不满足时阈值时,重新链表化。
源码解析
基本属性
/**
* 初始容量为16
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* 最大容量为2^30
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* 默认的负载因子.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* 链表树化的阈值
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* 树转换链表的阈值
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* 树化时,数组的最小容量,避免树化和大小调整发生冲突
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/* ---------------- Fields -------------- */
/**
* 数组
*/
transient Node<K,V>[] table;
/**
* 保存缓存的entrySet()
*/
transient Set<Map.Entry<K,V>> entrySet;
/**
* map中数据的条数
*/
transient int size;
/**
*HashMap修改结构的次数,用来实现一个乐观锁
*/
transient int modCount;
/**
* 下一个要调整的大小 (容量 * 负载因子).
*
*/
int threshold;
/**
* hash表中的负载因子
*/
final float loadFactor;
信息整理:
1、创建HashMap不设置值时,默认初始值为16,最大值是2^30,负载因子为0.75
2、树化和链表化的节点阈值是8、6
3、树化除了满足节点阈值外还需要满足数组容量不低于64。
内部类
/**
* 链表实现的内部类,里面具体的方法就不介绍了
*/
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
}
/**
* 树化实现的内部类
*/
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
}
信息整理:
HashMap的数据结构是数组+链表+红黑树。链表则是Node类,红黑树则是TreeNode,数组则是一个Node类型的数组。
构造器
/**
*木得啥子好看的
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* so easy
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
/**
*使用的都是默认属性
*/
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
/**
*值得探究的构造器
* @param initialCapacity 大小
* @param loadFactor 负载因子
*/
public HashMap(int initialCapacity, float loadFactor) {
//保证数据的完整性
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
//对初始化大小进行判断,当值没有大于64时,不会进行不必要的数据扩容
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//保证数据的完整性
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
//初始化负载因子
this.loadFactor = loadFactor;
//初始化大小,确保数组容量是2的次方,具体原因在新增数据的时候解释
this.threshold = tableSizeFor(initialCapacity);
}
/**
* 数组扩容,返回大于且最接近cap的二幂,
*计算方式:利用二进制,进行右移之后进行亦或运算,不断将最高位为1之后的所有位变为1
*最后得到的值将是2的幂-1,能够极快的得到2的幂
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
信息整理:
1、构造器之间的互相调用,典型的 “封装” 行为,减少了不必要代码。
2、扩容采用了二进制计算,速度快,并且计算方式精巧
put方法
/**
*指定值和指定键的关联,如果存在旧值,则替换
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
*计算key的哈希值
*将散列表的高位移动到低位后,将两个值进行与运算。一种相对高效并且简单的计算方式
*/
static final int hash(Object key) {
int h; //无符号右移十六位
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
/**
* 实现Map.put和相关方法
* @param hash hash for key key的哈希值
* @param key the key key值
* @param value the value to put value值
* @param onlyIfAbsent 如果为true则不改变当前value值
* @param evict 如果为false,则说明容器还没有初始化完成
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
//tab是原始容器 p是存放的元素 n是集合长度 i是当前位置
Node<K,V>[] tab; Node<K,V> p; int n, i;
//判断是否被初始化
if ((tab = table) == null || (n = tab.length) == 0)
//执行初始化并且赋值
n = (tab = resize()).length;
//判断当前位置是否有元素存放
if ((p = tab[i = (n - 1) & hash]) == null)
//若没有元素存放,则直接放上去
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//存放元素的hash和传进来的hash是否相等
if (p.hash == hash &&
//存放元素的key和传进来的key是否相等 ==是判断基本类型或者对象引用 equals判断值对象是否相等
((k = p.key) == key || (key != null && key.equals(k))))
e = p; //相等则将p赋值给e
else if (p instanceof TreeNode) //判断p是不是树节点
//将p转换为树节点,并赋值给e
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//循环链表
for (int binCount = 0; ; ++binCount) {
//找到链表的最后一个元素
if ((e = p.next) == null) {
//创建一个新节点
p.next = newNode(hash, key, value, null);
//判断链表长度是否大于等于8
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
//将当前节点转换为红黑树,该方法里面还判断了数据元素个数大于64,满足这个条件之后,才会进行树化
treeifyBin(tab, hash);
break;
}
//如果hash相等,并且key也相等,那么就当前存贮元素就是已经存在了的,就不必进行操作了
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;//下一个节点
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;//将存放的value放入节点当中
afterNodeAccess(e);//将节点移动到最后
return oldValue;
}
}
++modCount; //记录对hashMap修改的次数,主要用于迭代器,
if (++size > threshold) //判断下一个元素是否需要扩容
resize();//进行扩容
afterNodeInsertion(evict);//这个方式是LinkedHashMap用的,在hashMap里面是个空方法
return null;
}
putAll方法
/**
* putAll方法
*/
public void putAll(Map<? extends K, ? extends V> m) {
putMapEntries(m, true);
}
/**
* Implements Map.putAll and Map constructor
*
* @param m 需要添加的map集合
* @param evict false则是new对象时,添加的map
*/
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
//获取添加对象的大小
int s = m.size();
//有数组,则添加
if (s > 0) {
//判断容器是否初始化
if (table == null) { // pre-size
//判断添加该集合之后,是否需要扩容
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
else if (s > threshold)
resize();
//将数据一个一个放到集合当中
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
resize方法
/**
* 初始化或增加表的大小,如果表为null,则根据阈值保持初始化容量进行分配。否则将使用2的幂
*进行容量分配。每次增加的表大小是原大小的两倍。
* @return the table
*/
final Node<K,V>[] resize() {
//获得数组
Node<K,V>[] oldTab = table;
//oldCap数组长度,oldThr扩容阈值,newCap新的数组长度,newThr新的扩容阈值
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
//计算当前数组大小是否超过数组最大容量,如果大于则赋值最大容量,否则扩大两倍
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; //扩容之后,设置新的阈值
}
else if (oldThr > 0) // 将新的数组长度设置为阈值
newCap = oldThr;
else { // 零阈值,则设置为默认值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//保证扩容阈值的完整性,如果扩容阈值为零,则计算新的扩容阈值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//新的阈值
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
//新的数组大小
table = newTab;
if (oldTab != null) {
//循环节点数组
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
//如果桶中只有一个元素,则直接将数据迁移到新桶中
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
//如果节点是树节点,则进行拆分成两棵树
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
//两条链表
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
//当前桶的头节点
Node<K,V> next;
do {
next = e.next;
//将链表拆分成高位链表和低位链表
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//低位链表就放在当前位置
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//高位链表就放在(原位置+原数组长度),这样的做法是为了扩容后的数据发布更加均匀
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
消息整理:
为什么hashMap,每次扩容大小都必须是2的幂?
只有它的长度是二的n次幂的时候,我们对他进行减一操作,才能拿到全部是一的二进制,这样对它进行&,才能够非常快速的按照位运算获取数组下标,并且数组下标是均匀分布的
get方法
public V get(Object key) {
Node<K,V> e;
//将key和key的哈希带入节点查找中
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//判断是否是空集合是否不存在,
//并且根据hash和集合长度计算出该下标的数组位置是否是null
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//判断hash是否在数组当中
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
//判断是不是树结构
if (first instanceof TreeNode)
//查找树中是否存在当前hash
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//循环链表,根据hash查找值
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
//啥都不满足则返回null
return null;
}
remove方法
public V remove(Object key) {
Node<K,V> e;
//将key和key的hash带入方法中
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
//首先判断集合和和key是否存在
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
//整个if-else 都是在查找元素是否存在
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
//判断value值是否存之有效
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
//如果是树节点,则根据树规则删除
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
//如果是数组,直接将当前节点的下一级节点放到当前数组中
tab[index] = node.next;
else
//如果是链表则将当前节点的下一级节点赋值给当前节点
p.next = node.next;
//容器修改次数加一
++modCount;
//数据大小减一
--size;
//这个方式是LinkedHashMap用的,在hashMap里面是个空方法
afterNodeRemoval(node);
return node;
}
}
return null;
}