读源码---HashMap-JDK1.8

本文深入解析HashMap的内部结构,包括其基于数组+链表+红黑树的数据存储方式,探讨了HashMap的构造器、put、putAll、resize、get和remove方法的实现原理。详细分析了HashMap的初始化、扩容策略及节点树化和链表化的阈值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

HashMap是基于哈希表的 Map 接口的实现的。是一种典型的Key-Vlaue,允许使用null值和null键,HashMap不保证映射顺序,不保证顺序恒久不变。非线程安全。

继承体系

HashMap继承结构
Serializable:启用其序列化功能,该接口没有方法和字段,仅用于表示可序列化的语义。
Cloneable:启用字段复制,指示Object.clone()方法可以合法地对该类实例进行按字段复制。
AbstractMap:提供了map集合的基本实现。
Map:HashMap的抽象接口。

数据结构


HashMap使用的是数组+联保+红黑树的方式实现的数据存储。
存储过程(简略版):根据key计算的hash值和数组长度-1的值进行二进制计算,得出一个数组下标,将value存放当中。当该位置有值,则进行链表化。当链表达到阈值,则将链表进行树化。当树结构不满足时阈值时,重新链表化。

源码解析

基本属性

    /**
     * 初始容量为16
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * 最大容量为2^30
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * 默认的负载因子.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * 链表树化的阈值
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * 树转换链表的阈值
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * 树化时,数组的最小容量,避免树化和大小调整发生冲突
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

 /* ---------------- Fields -------------- */
    /**
     * 数组
     */
    transient Node<K,V>[] table;

    /**
     * 保存缓存的entrySet()
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * map中数据的条数
     */
    transient int size;

    /**
     *HashMap修改结构的次数,用来实现一个乐观锁
     */
    transient int modCount;

    /**
     * 下一个要调整的大小 (容量 * 负载因子).
     *
     */
    int threshold;

    /**
     * hash表中的负载因子
     */
    final float loadFactor;

信息整理:
1、创建HashMap不设置值时,默认初始值为16,最大值是2^30,负载因子为0.75
2、树化和链表化的节点阈值是8、6
3、树化除了满足节点阈值外还需要满足数组容量不低于64。

内部类


   /**
    * 链表实现的内部类,里面具体的方法就不介绍了
    */
   static class Node<K,V> implements Map.Entry<K,V> {
       final int hash;
       final K key;
       V value;
       Node<K,V> next;
   }
  /**
    * 树化实现的内部类
    */
   static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
       TreeNode<K,V> parent;  // red-black tree links
       TreeNode<K,V> left;
       TreeNode<K,V> right;
       TreeNode<K,V> prev;    // needed to unlink next upon deletion
       boolean red;
  }

信息整理:
HashMap的数据结构是数组+链表+红黑树。链表则是Node类,红黑树则是TreeNode,数组则是一个Node类型的数组。

构造器

    /**
     *木得啥子好看的
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * so easy
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /**
     *使用的都是默认属性
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }
   /**
     *值得探究的构造器
     * @param  initialCapacity 大小
     * @param  loadFactor      负载因子
     */
    public HashMap(int initialCapacity, float loadFactor) {
//保证数据的完整性
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
       //对初始化大小进行判断,当值没有大于64时,不会进行不必要的数据扩容
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
//保证数据的完整性
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
//初始化负载因子
        this.loadFactor = loadFactor; 
//初始化大小,确保数组容量是2的次方,具体原因在新增数据的时候解释
        this.threshold = tableSizeFor(initialCapacity);
    } 
   /**
     * 数组扩容,返回大于且最接近cap的二幂,
     *计算方式:利用二进制,进行右移之后进行亦或运算,不断将最高位为1之后的所有位变为1
     *最后得到的值将是2的幂-1,能够极快的得到2的幂
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

信息整理:
1、构造器之间的互相调用,典型的 “封装” 行为,减少了不必要代码。
2、扩容采用了二进制计算,速度快,并且计算方式精巧

put方法

  /**
     *指定值和指定键的关联,如果存在旧值,则替换 
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
/**
  *计算key的哈希值
  *将散列表的高位移动到低位后,将两个值进行与运算。一种相对高效并且简单的计算方式
  */
 static final int hash(Object key) {
        int h;                                                            //无符号右移十六位
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    /**
     * 实现Map.put和相关方法
     * @param hash hash for key  key的哈希值
     * @param key the key    key值
     * @param value the value to put  value值
     * @param onlyIfAbsent  如果为true则不改变当前value值
     * @param evict 如果为false,则说明容器还没有初始化完成
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        //tab是原始容器  p是存放的元素   n是集合长度   i是当前位置
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //判断是否被初始化
        if ((tab = table) == null || (n = tab.length) == 0)
            //执行初始化并且赋值
            n = (tab = resize()).length;
        //判断当前位置是否有元素存放
        if ((p = tab[i = (n - 1) & hash]) == null)
            //若没有元素存放,则直接放上去
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            //存放元素的hash和传进来的hash是否相等
            if (p.hash == hash &&
               //存放元素的key和传进来的key是否相等  ==是判断基本类型或者对象引用    equals判断值对象是否相等
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p; //相等则将p赋值给e
            else if (p instanceof TreeNode) //判断p是不是树节点
                //将p转换为树节点,并赋值给e
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //循环链表
                for (int binCount = 0; ; ++binCount) {
                    //找到链表的最后一个元素
                    if ((e = p.next) == null) {
                        //创建一个新节点
                        p.next = newNode(hash, key, value, null);
                        //判断链表长度是否大于等于8
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            //将当前节点转换为红黑树,该方法里面还判断了数据元素个数大于64,满足这个条件之后,才会进行树化
                            treeifyBin(tab, hash);
                        break;
                    }
                    //如果hash相等,并且key也相等,那么就当前存贮元素就是已经存在了的,就不必进行操作了
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;//下一个节点
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;//将存放的value放入节点当中
                afterNodeAccess(e);//将节点移动到最后
                return oldValue;
            }
        }
        ++modCount; //记录对hashMap修改的次数,主要用于迭代器,
        if (++size > threshold) //判断下一个元素是否需要扩容
            resize();//进行扩容
        afterNodeInsertion(evict);//这个方式是LinkedHashMap用的,在hashMap里面是个空方法
        return null;
    }

putAll方法

  /**
     * putAll方法
     */
 public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    } 
  /**
     * Implements Map.putAll and Map constructor
     *
     * @param m  需要添加的map集合
     * @param evict false则是new对象时,添加的map
     */
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        //获取添加对象的大小
        int s = m.size();
        //有数组,则添加
        if (s > 0) {
            //判断容器是否初始化
            if (table == null) { // pre-size
                //判断添加该集合之后,是否需要扩容
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                resize();
            //将数据一个一个放到集合当中
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

resize方法

   /**
     * 初始化或增加表的大小,如果表为null,则根据阈值保持初始化容量进行分配。否则将使用2的幂                          		    			                
     *进行容量分配。每次增加的表大小是原大小的两倍。
     * @return the table
     */
     final Node<K,V>[] resize() {
        //获得数组
        Node<K,V>[] oldTab = table;
        //oldCap数组长度,oldThr扩容阈值,newCap新的数组长度,newThr新的扩容阈值
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        //计算当前数组大小是否超过数组最大容量,如果大于则赋值最大容量,否则扩大两倍
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                    oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; //扩容之后,设置新的阈值
        }
        else if (oldThr > 0) // 将新的数组长度设置为阈值
            newCap = oldThr;
        else {               // 零阈值,则设置为默认值
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //保证扩容阈值的完整性,如果扩容阈值为零,则计算新的扩容阈值
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                    (int)ft : Integer.MAX_VALUE);
        }
        //新的阈值
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        //新的数组大小
        table = newTab;
        if (oldTab != null) {
            //循环节点数组
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        //如果桶中只有一个元素,则直接将数据迁移到新桶中
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        //如果节点是树节点,则进行拆分成两棵树
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        //两条链表
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        //当前桶的头节点
                        Node<K,V> next;
                        do {
                            next = e.next;
                            //将链表拆分成高位链表和低位链表
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        //低位链表就放在当前位置
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        //高位链表就放在(原位置+原数组长度),这样的做法是为了扩容后的数据发布更加均匀
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

消息整理:
为什么hashMap,每次扩容大小都必须是2的幂?
只有它的长度是二的n次幂的时候,我们对他进行减一操作,才能拿到全部是一的二进制,这样对它进行&,才能够非常快速的按照位运算获取数组下标,并且数组下标是均匀分布的

get方法

    public V get(Object key) {
        Node<K,V> e;
//将key和key的哈希带入节点查找中
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //判断是否是空集合是否不存在,
        //并且根据hash和集合长度计算出该下标的数组位置是否是null
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //判断hash是否在数组当中
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                //判断是不是树结构
                if (first instanceof TreeNode)
                    //查找树中是否存在当前hash
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //循环链表,根据hash查找值
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        //啥都不满足则返回null
        return null;
    }

remove方法

  public V remove(Object key) {
        Node<K,V> e;
//将key和key的hash带入方法中
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        //首先判断集合和和key是否存在
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            //整个if-else 都是在查找元素是否存在
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //判断value值是否存之有效
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    //如果是树节点,则根据树规则删除
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    //如果是数组,直接将当前节点的下一级节点放到当前数组中
                    tab[index] = node.next;
                else
                    //如果是链表则将当前节点的下一级节点赋值给当前节点
                    p.next = node.next;
                //容器修改次数加一
                ++modCount;
                //数据大小减一
                --size;
                //这个方式是LinkedHashMap用的,在hashMap里面是个空方法
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值