Segmentation fault(段错误,内存溢出,指针错误)

一般出现这个问题,直接debug调试,debug之后IDE会停留在对应的语句上,然后检查这个代码语句对应的指针是否指向了空地址或者是溢出的地址(即改地址不能被访问),如下图

这种情况一般就两种解决方式:

1.首先肯定是逐步debug检查你的代码,确保出现错误的地方的指针没有指向溢出的地址,即没有出现地址越界。

2.一般出现这种错误,都是你的指针出现了问题。但还有一种情况是,这个代码你之前能够正常运行,但是你在没有动过原先代码的基础上,添加了其他代码,之后就不能运行了。那么这种情况也是地址或内存越界或损坏引起的,推进以下解决方法:

一、在报错的代码之前加入其他无关语句

如图,在上方加入int a = 0;这种方法治标不治本,也不一定有用;主要原因是这个语句占用了一定到的内存空间,是内存空间发生偏移,刚好可能就解决了你的问题。

二、重新编译项目

在终端重新make一下项目也可能解决。

三、根本的方式,推荐使用valgrind工具来检测内存

如上图,我的项目的可执行文件是ssd,直接使用命令 sudo valgrind ./ssd就可以,当然,前提是的安装了valgrind。之后valgrind会给出详细的内存使用信息,包括,哪些地方越界访问,哪些地方变量或指针未初始化等等,如果看不懂或懒得看,可以直接复制输出信息给GPT,如上图,然后对应的错误信息一个个修改检查就行。

### RKNN 部署 YOLOv5 出现 Segmentation Fault 的原因分析 在使用 RKNN 工具部署 YOLOv5 时,如果出现 `Segmentation Fault` 错误,通常是由以下几个可能的原因引起的: #### 1. **模型转换过程中的兼容性问题** RKNN Toolkit 可能无法完全支持某些复杂的 ONNX 操作符。例如,在引用中提到的 TensorRT 中的老版本 ONNXParser 不支持 `GridSample` 和 `LayerNormalization` 节点解析[^1]。类似地,YOLOv5 的部分操作可能会超出 RKNN 支持的操作范围。 解决方法之一是手动优化或简化模型结构,移除不被支持的操作节点。可以通过以下方式尝试修复: - 使用工具如 Netron 查看 ONNX 模型的图结构,定位到可能导致问题的具体层。 - 修改 PyTorch 原始代码,调整网络架构以避免复杂操作。 ```python import torch.onnx def export_simplified_model(model, input_size=(3, 640, 640), output_path="simplified_yolov5.onnx"): dummy_input = torch.randn(1, *input_size) torch.onnx.export( model, dummy_input, output_path, opset_version=12, do_constant_folding=True, input_names=["images"], output_names=["output"] ) ``` #### 2. **硬件与软件环境的适配问题** 树莓派或其他嵌入式设备上的 Python 环境可能存在冲突,尤其是在 ROS 或其他框架共存的情况下。正如引用所描述的情况,ROS 系统和 Conda 环境可能发生冲突[^2]。因此建议使用独立的虚拟环境(如 venv),并确保所有依赖项正确安装。 此外,还需要确认 RKNN SDK 是否针对当前使用的芯片型号进行了充分测试和支持。如果不匹配,则可能出现不可预期的行为。 #### 3. **内存不足或资源分配失败** 嵌入式平台往往具有有限的计算能力和存储空间。当加载较大的神经网络模型或者执行高分辨率图像检测任务时,容易触发内存溢出等问题,从而引发段错误。 为了缓解这一状况,可以考虑降低输入图片尺寸、减少批处理大小(batch size),甚至裁剪掉不必要的分支路径来减小整体消耗。 #### 4. **编译选项设置不当** 有时即使完成了模型转换流程,但如果未合理指定目标处理器特性参数也会造成崩溃现象发生。比如 ARM Cortex-A72 架构下的特定指令集启用与否就会影响程序稳定性。 可以在调用 rknn.load_rknn() 方法之前增加额外配置步骤如下所示: ```python from rknn.api import RKNN rknn = RKNN() config = { 'quantized_dtype': 'dynamic_fixed_point-i8', 'target_platform': ['rv1126'], } rknn.config(**config) print('--> Loading RKNN model') ret = rknn.load_rknn('./yolov5.rknn') if ret != 0: print('Load RKNN model failed!') exit(ret) ``` 通过以上措施应该能够有效改善因 Segmentaion Fault 导致的应用终止情况。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值