图森未来-感知算法面经(深度学习)(方向不同)

本文分享了图森未来深度学习感知算法面试经验,重点介绍了单目标跟踪项目,包括DaSiamRPN和SiamRPN++的改进,感受野计算,BN加速技巧,以及对多目标跟踪的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图森未来-感知算法面经(深度学习)

楼主方向:单目标跟踪
但是。。。。图森主要做多目标跟踪

但还是要说一下具体面试问题,面试官可能之前也面过很多做SOT的同学:
1.讲项目(包括设计的论文)
有DaSiamRPN,SiamRPN++相比于SiamRPN的改进,如何解决了增加深度的问题
2.如何计算感受野
3.加速BN计算:
将BN和Conv结合
4.你理解多目标跟踪吗
5.BN的前向传播

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值