-
均值填充 (Mean Imputation):
- 均值填充是最简单的缺失值插值方法之一。它的原理是用特征列的平均值来填充缺失值。这种方法适用于连续型数据,且假设缺失的数据是随机的。
- 优点:简单易用,不需要额外的模型训练。
- 缺点:可能会引入噪音,尤其是当数据有较多的离群值时。
-
中位数填充 (Median Imputation):
- 中位数填充与均值填充类似,但是它用特征列的中位数来填充缺失值。中位数是将数据按顺序排列后,位于中间位置的值。
- 优点:对于数据中存在离群值的情况更稳健。
- 缺点:可能仍然引入噪音,特别是当数据分布不对称时。
-
众数填充 (Mode Imputation):
- 众数填充使用特征列的众数(即出现频率最高的值)来填充缺失值。这种方法通常用于离散型数据或具有明显众数的连续型数据。
- 优点:适用于离散型数据,能够保持数据的整体分布。
- 缺点:对于连续型数据或分布不均匀的数据不够合适。
-
线性插值 (Linear Interpolation):
- 线性插值是一种连续型数据的插值方法,它使用已知数据点之间的直线来估计缺失值。这意味着在两个已知数据点之间的任何位置,都可以使用线性函数来估计缺失值。
- 优点:适用于时间序列或有序数据,能够在一定程度上保持数据的趋势。
- 缺点:对于非线性关系的数据可能表现不佳。
杂记-缺失值插值方式
最新推荐文章于 2024-04-02 16:14:15 发布