杂记-缺失值插值方式

  1. 均值填充 (Mean Imputation)

    • 均值填充是最简单的缺失值插值方法之一。它的原理是用特征列的平均值来填充缺失值。这种方法适用于连续型数据,且假设缺失的数据是随机的。
    • 优点:简单易用,不需要额外的模型训练。
    • 缺点:可能会引入噪音,尤其是当数据有较多的离群值时。
  2. 中位数填充 (Median Imputation)

    • 中位数填充与均值填充类似,但是它用特征列的中位数来填充缺失值。中位数是将数据按顺序排列后,位于中间位置的值。
    • 优点:对于数据中存在离群值的情况更稳健。
    • 缺点:可能仍然引入噪音,特别是当数据分布不对称时。
  3. 众数填充 (Mode Imputation)

    • 众数填充使用特征列的众数(即出现频率最高的值)来填充缺失值。这种方法通常用于离散型数据或具有明显众数的连续型数据。
    • 优点:适用于离散型数据,能够保持数据的整体分布。
    • 缺点:对于连续型数据或分布不均匀的数据不够合适。
  4. 线性插值 (Linear Interpolation)

    • 线性插值是一种连续型数据的插值方法,它使用已知数据点之间的直线来估计缺失值。这意味着在两个已知数据点之间的任何位置,都可以使用线性函数来估计缺失值。
    • 优点:适用于时间序列或有序数据,能够在一定程度上保持数据的趋势。
    • 缺点:对于非线性关系的数据可能表现不佳。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值