(三)--MNIST数据集分类(简单版本)

该博客介绍了如何使用TensorFlow库搭建一个简单的神经网络,对MNIST手写数字数据集进行分类。通过定义网络结构、损失函数、优化器并进行训练,最终计算并输出测试集上的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[toc]

MNIST数据集分类(简单版本)
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#载入数据集
mnist=input_data.read_data_sets("MNIST_data",one_hot=True) #one_hot把标签转成只有0或1

#每个批次的大小
batch_size=100 #一次以矩阵的形式方100张图片进去,可以改
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size #整除

#定义两个placeholder
x=tf.placeholder(tf.float32,[None,784]) #None后面会成100
y=tf.placeholder(tf.float32,[None,10]) #0-9十个数字

#创建一个简单的神经网络(可以改,如加隐藏层、换激活函数)
W=tf.Variable(tf.zeros([784,10])) #权值
b=tf.Variable(tf.zeros([10])) #偏置值
prediction=tf.nn.softmax(tf.matmul(x,W)+b) #softmax会转换成概率值

#二次代价函数(可以改成交叉熵)
loss=tf.reduce_mean(tf.square(y-prediction))
#用梯度下降法(学习率可以改)
train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#初始化变量
init=tf.global_variables_initializer()

#结果存放在一个布尔型列表中
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1)) #一样是true,反之则false argmax求最大值的位置(得到标签),这里是哪个位置值为1
#求准确率
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) #先转换类型(true为1,false为0)再求平均值

with tf.Session() as sess:
sess.run(init)
for epoch in range(21): #周期,可以改
for batch in range(n_batch): #批次
batch_xs,batch_ys=mnist.train.next_batch(batch_size) #前者为数据,后者为标签
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter "+str(epoch)+",Testing Accuracy "+str(acc))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值