(已解决)报错 ValueError: Tensor conversion requested dtype float32 for Tensor with dtype resource

本文记录了一个在Tensorflow 1.14和python 3.6环境中遇到的深度学习网络构建错误:ValueError: Tensor conversion requested dtype float32 for Tensor with dtype resource。原因是tensorflow.python.keras.layers与tf.layers中的Layer类型差异,特别是使用了keras层如Dense和Embedding。解决方法包括检查并替换Layer类型,或创建一个同时继承自keras层和tensorflow基础层的wrapper,以确保数据类型为'float32_ref'。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记录一个花了一整天才解决的问题:
(Tensorflow 1.14, python 3.6)

自己写的深度学习网络,在build graph阶段报错:ValueError: Tensor conversion requested dtype float32 for Tensor with dtype resource

查看 tf.variable 的 dtype 发现全都是“float32", 而正常情况下(对应我的tf版本)应该是"float32_ref”。不清楚二者有何不同,但float32这个类型导致我生成的graph里按变量名读不到指定的 tensor 内容。
例如:
直接读网络里的某个tf变量v,输出为: <tf.Variable ‘conv/kernel:0’ shape=(64, 64) dtype=float32>
而使用get_tensor_by_name()从生成的graph里读同一个tf变量,输出为: Tensor(“conv/kernel:0”, shape=(), dtype=resource)
dtype莫名其妙变成了resource,shape信息也读不到。

原因:

tensorflow.python.keras.layers 与 tf.layers 里的 Layer 不同.
我的网络里用到了keras的层,比如 Dense, Embedding,导致数据类型变成了 float32 而不是 float32_ref。
(检查发现把 tensorflow.python.keras.layers.Dense 替换成 tensorflow.layers.Dense, 就可以使相关的变量类型变成 float32_ref,也可以从graph里正常读到其shape和dtype了)

解决方法:

有些层只有keras里有,tf里没有,例如 Embedding. 为了使用这些层,且使数据类型为“float32_ref",可以自己写一个wrapper,同时以 keras layer 和 tensorflow base layer 为父类:

from tensorflow.python.layers import base

class MyEmbedding(tensorflow.python.keras.layers.Embedding, base.Layer):
    def __init__(self, input_dim, output_dim):
        super(MyEmbedding, self).__init__(input_dim=input_dim, output_dim=output_dim)

一个忠告:说多了都是泪,能用torch坚决别碰tf…

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值