XGBoost原理及使用

1、XGBoost算法原理:

关于XGBoost算法的原理部分,有兴趣的可以去看XGBoost的论文陈天奇的PPT

对英文有障碍的朋友可以去看刘建平博客总结的非常好。

2、XGBoost库比较:

XGBoost有2种Python接口风格。一种是XGBoost自带的原生Python API接口,另一种是sklearn风格的API接口,两者的实现是基本一样的,仅仅有细微的API使用的不同,主要体现在参数命名上,以及数据集的初始化上面。

xgboost库要求我们必须要提供适合的Scipy环境,如果你是使用anaconda安装的Python,你的Scipy环境应该是没有什么问题。

#windows安装
pip install xgboost #安装xgboost库
pip install --upgrade xgboost #更新xgboost库

#导入库
import xgboost as xgb

现在,我们有两种方式可以来使用我们的xgboost库。

第一种方式,是直接使用xgboost库自己的建模流程。
在这里插入图片描述

  1. DMatrix
xgboost.DMatrix(data, label=None, weight=None, base_margin=None, missing=None, silent=False, feature_names=None, feature_types=None, nthread=None)
  1. params
params {
   eta, gamma, max_depth, min_child_weight, max_delta_step, subsample, colsample_bytree,
colsample_bylevel, colsample_bynode, lambda, alpha, tree_method string, sketch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值