机器学习笔记:线性判别分析(Fisher)

本文介绍了线性判别分析(LDA)的基本原理及其在二分类问题中的应用。重点讲解了如何通过最大化类间距离与最小化类内方差来找到最佳投影方向,从而实现数据的高效分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        线性判别分析可用于处理二分类问题,其过程是寻找一个最佳的投影方向,使得样本点在该方向上的投影符合类内小、类间大的思想(“低耦合,高内聚”),具体指的是类内的方差之和小,类间的均值之差大

1 、数据

        

2 目标函数 

2.1 均值&方差

     ——>这个是两个类放到一块的数据集的均值和方差

     

   

 2.2 目标函数

 定义目标函数

2.2.1 分子

分子是类间均值的距离(中心点之间的距离),越大表示类“分得越快” 

 

 2.2.2 分母

分母是两个类方差的和,越小表示每个类“内部越紧”

先看S1

S2 同理,所以有:

 2.2.3 目标函数整体

结合2.2.1和2.2.2,我们有:

 极大化J(w)就可以使得类内的方差之和小,类间的均值之差大。

3 线性判别分析的求解

为了方便起见,我们令:

于是

 对J(w)关于w求导数:

 

 参考内容:机器学习-白板推导系列笔记(四)-线性分类_scu-liu的博客-CSDN博客

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值