论文略读:Auto-Regressive Moving Diffusion Models for Time Series Forecasting

AAAI 2025

  • 在这篇论文中,时间序列的演进(X_{-L+1:0}\rightarrow X_{1:T})被概念化为一个扩散过程
    • 时间序列的每一步都可以看成是扩散模型的一个状态
    • 未来序列X^0_{1:T}(下标表示在序列中的位置,上标表示在扩散模型中的状态)作为前向扩散(演进)过程的初始状态
    • 历史序列X_{-L+1:0}^T是最终状态
  • 不同于传统方法逐渐添加噪声生成中间状态,这篇论文提出的ARMD通过对X^0_{1:T}进行滑动操作来生成中间状态X_{1-t,T-t}^t,使其逐渐接近历史序列
    • ——>保持了时间序列的连续性
    • ——>确保每个中间状态反映了时间序列演进的特定阶段
  • 采样(预测)阶段,ARMD 从历史序列X_{1-t,T-t}^t开始,迭代生成对未来序列的预测,使采样过程和最终的时间序列预测目标对齐

结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值