论文略读; AdapterFusion:Non-Destructive Task Composition for Transfer Learning

EACL 2021

  • 在 Adapter 的基础上进行优化
    • 将学习过程分为两阶段来提升下游任务表现
      • 知识提取阶段
        • 在不同任务下引入各自的Adapter模块,用于学习特定任务的信息。
        • 有两种训练方式
          • Single-Task Adapters(ST-A)
            • 对于N个任务,模型都分别独立进行优化,各个任务之间互不干扰,互不影响。
          • Multi-Task Adapters(MT-A)
            • N个任务通过多任务学习的方式,进行联合优化。

        • 实验说明,第一阶段采用ST-A+第二阶段AdapterFusion是最有效的方法

          • 第一阶段采用MT-A+第二阶段AdapterFusion没有取得最佳的效果,在于第一阶段其实已经联合了多个任务的信息了,所以AdapterFusion的作用没有那么明显

      • 知识组合阶段
        • 将预训练模型参数与特定任务的Adapter参数固定
        • 引入新参数(AdapterFusion)来学习组合多个Adapter中的知识,以提高模型在目标任务中的表现
        • 本质上也是一个attention
        • query是transformer每个子模块的输出结果
        • key跟value则是N个任务的adapter的输出
        • 为不同的任务对应的adapter分配不同的权重,聚合N个任务的信息,从而为特定任务输出更合适的结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值