论文略读:GINGER: Grounded Information Nugget-Based Generation of Responses

SIGIR 2025

  • 用户日益依赖对话助手(如 ChatGPT)来满足多种信息需求,这些需求包括开放式问题、需要推理的间接回答,以及答案分布在多个段落中的复杂查询
    • RAG试图通过在生成过程中引入检索到的信息来解决这些问题
      • 但如何确保回应的透明性和来源可追溯性仍是一个未解难题
      • 在提示中注入证据可以减少幻觉(hallucination),但冗余信息和过长的上下文容易导致“中间信息遗失”(lost in the middle)问题,即模型难以从长上下文的中部提取相关信息
  • ——>论文提出了一个模块化流水线:GINGER(Grounded Information Nugget-Based GEneration of Response)
    • 与现有 RAG 方法相比,GINGER 的主要创新在于它基于“信息颗粒”(information nuggets)运作,后者是最小的相关信息单元
    • 在响应用户查询所检索到的一组段落中,GINGER 识别出段落中的信息颗粒,按查询的不同方面对其进行聚类,按相关性对聚类进行排序,对最相关的聚类进行摘要,并对最终回应进行流畅性与连贯性的优化
    • GINGER 独特地建模查询的不同方面,以确保回应中包含尽可能多的独特、有用的信息
    • 该方法通过将最终回应紧密锚定于原始段落来源,并支持轻松验证引用,显著提升了用户体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值