
numpy
numpy
我是一个对称矩阵
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
numpy系列(5)-索引、切片、排序、搜索和计数
1. 数组索引 一维:假设有a=array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) i. 获取索引值为 1 的数据: a[1] // 1 ii. 分别获取索引值为 1,2,3 的数据: a[[1, 2, 3]] // array([1, 2, 3]) 二维:假设有a= array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]原创 2021-02-09 15:50:49 · 382 阅读 · 0 评论 -
numpy系列(4)-数学函数、算数、代数运算
1. 数学函数 • np.pi :兀 1.1 三角函数 • numpy.sin(x):三角正弦。 • numpy.cos(x):三角余弦。 • numpy.tan(x):三角正切。 • numpy.arcsin(x):三角反正弦。 • numpy.arccos(x):三角反余弦。 • numpy.arctan(x):三角反正切。 • numpy.hypot(x1,x2):直角三角形求斜边。 • numpy.degrees(x):弧度转换为度。 • numpy.radians(x):度转换为弧度。 • nu原创 2021-02-09 15:50:21 · 509 阅读 · 0 评论 -
numpy系列(3)-随机数、概率密度
1. 随机数:主要由 numpy.random 模块完成 numpy.random.rand(3,2,3) #使用 [0,1) 区间随机数均匀分布填充一个(3,2,3)(自定义尺寸)数组 numpy.random.randn(3,2,3) // 使用标准正态分布而已 np.random.randint(low, high, size, dtype) // [low, high)随机整数 np.random.random_sample(random_sample(size)) // 0, 1)原创 2021-02-09 15:49:45 · 1276 阅读 · 0 评论 -
numpy系列(2)-数组的基本操作
按序号查看 1.改变数组形状 2.数组展开 3.轴移动 4.轴交换 5.数组转置 6.维度改变 7.类型转换 8.数组连接 9.数组堆叠 10.数组拆分 11.元素删除 12.插入 13.附加 14.重设尺寸 15.翻转数组 0. NumPy 数组图示 注意axis定义,shape返回的大小与axis轴对应 1. 改变数组形状 reshape 可以在不改变数组数据的同时,改变数组的形状: numpy.reshape(a, newshape) //newshape 用于指定新的形状(整数或者元组原创 2021-02-09 15:48:50 · 441 阅读 · 0 评论 -
numpy系列(1)-数组创建及属性
1. 预 a //查看a a.dtype //查看dtype类型 a.astype(int) //将a转为int型 2. 创建ndarray 使用np.array方法 np.array([[1, 2, 3], [4, 5, 6]]) np.array([(1, 2), (3, 4), (5, 6)]) b. 使用arange numpy.arange(start, stop, step, dtype=None) //[开始, 停止) c. 使原创 2021-02-09 15:46:58 · 223 阅读 · 0 评论