应用隐类霍夫森林:Latent-Class Hough Forests for 3D Object Detection and Pose Estimation(笔记)——2014

本文介绍了隐类霍夫森林框架,用于高杂波和遮挡环境中的3D目标检测和姿态估计。通过结合LINEMOD的尺度不变patch描述符和新的基于模板的分割函数,实现对背景杂波和前景遮挡的准确估计,提高检测率。在训练中仅使用正样本,叶节点的类分布作为隐变量进行迭代更新,同时提供精确的遮挡感知分割掩码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应用隐类霍夫森林进行3D目标检测和姿态估计(笔记)——2014

Latent-Class Hough Forests for 3D Object Detection and Pose Estimation

摘要

  1. 文章提出隐类霍夫森林框架,在高杂波和遮挡环境中进行3D目标检测和姿态估计。
  2. 将LINEMOD法引入一个尺度不变的patch描述符中,并使用一个新的基于模板的分割函数将其集成到回归森林中。
  3. 在训练中,我们的方法仅对正样本进行训练,而不是显式地收集有代表性的负样本,并将叶节点上的类分布作为隐变量。
  4. 在推理过程中,我们迭代地更新这些分布,提供了对背景杂波和前景遮挡的准确估计,从而提高了检测率。
  5. 此外,作为副产品,隐类分布可以提供精确的遮挡感知分割掩码,即使在多实例场景中也是如此。
  6. 我们还收集了一个新的更具挑战性的数据集,用于包含大量2D和3D杂波以及前景遮挡的多实例检测。在这里插入图片描述

引言

  1. 精确定位和姿态估计面临挑战:由相机的自由移动以及目标的部分遮挡,所引起严重的2D和3D杂波、大范围、姿态改变。
  2. 通过将多个局部区域的投票聚类成相互一致的假设来消除检测歧义(一致投票聚类,消除歧义),提升对抗前景遮挡的稳健性。
  3. 此外,通过一种辨识学习模型,将前景区域和背景杂波分开,还降低了误判率。

3D特征、点对特征、全局模板这些从模型提取的特征与场景进行匹配的方法,只考虑部分遮挡和单图单实例假设,也不知道背景分布。提出隐类霍夫森林

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值