PYTORCH疑惑系列--permute,view,shape

本文探讨了深度学习中维度转换的重要性,通过一个实验展示了torch库中的view、reshape和permute函数。实验使用了一个4x4的张量,并通过batch_x展示了它们的不同应用。view和reshape在多数情况下等效,它们按照指定形状重新构建张量,但可能在特定场景下破坏数据结构。相比之下,permute函数允许灵活地交换张量的维度,确保数据结构的完整性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在深度学习中经常出现维度转换操作,但维度转换很可能会打乱数据。这次我们设置一些实验去了解原理。

bs = 8
x = torch.tensor([
                [ [1, 2],[3, 4],[5, 6],[7, 8] ],
               [ [9, 10],[11, 12],[13, 14],[15, 16] ],
               [ [17, 18],[19, 20],[21, 22],[23, 24] ],
               [ [25, 26],[27, 28],[29, 30],[31, 32] ]
              ] )
batch_x = torch.cat([(x+i).unsqueeze(0) for i in range(bs)])

我们打印batch_xshape 和自身可以得到:

现在我们有个需求:将通道维度换算到最后一维 ,现在有几个函数可以使用view, reshapepermute

  • view:
  • reshape
  • permute
可以看出对于程序来说,reshape和view的效果是相同的。但他们仅仅是按照最后一维展开直接重新构建张量。当在某些特殊的场合时会破坏程序的数据构成。而permute可以按照原定的维度进行维度交换,不会发生这样子的错误。
### 回答1: 首先,导入必要的库: ```python import torch import torch.nn as nn ``` 然后,定义一个 CNN-GRU 模型,该模型由卷积层和循环层组成。在这里,我们将使用两个卷积层和一个 GRU 层。 ```python class CNN_GRU(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_filters, filter_sizes, dropout): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.convs = nn.ModuleList([ nn.Conv1d(in_channels = embedding_dim, out_channels = n_filters, kernel_size = fs) for fs in filter_sizes ]) self.gru = nn.GRU(n_filters * len(filter_sizes), hidden_dim, bidirectional=True) self.fc = nn.Linear(hidden_dim * 2, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, text): # text = [batch size, sent len] embedded = self.embedding(text) # embedded = [batch size, sent len, emb dim] embedded = embedded.permute(0, 2, 1) # embedded = [batch size, emb dim, sent len] conved = [conv(embedded) for conv in self.convs] # conved_n = [batch size, n_filters, sent len - filter_sizes[n] + 1] pooled = [nn.functional.max_pool1d(conv, conv.shape[2]).squeeze(2) for conv in conved] # pooled_n = [batch size, n_filters] cat = self.dropout(torch.cat(pooled, dim = 1)) # cat = [batch size, n_filters * len(filter_sizes)] output, hidden = self.gru(cat.unsqueeze(0)) # output = [seq_len, batch size, hidden_dim * num_directions] # hidden = [num_layers * num_directions, batch size, hidden_dim] hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)) # hidden = [batch size, hidden_dim * num_directions] return self.fc(hidden) ``` 这个模型的输入参数包括: - `vocab_size`: 词汇表大小 - `embedding_dim`: 嵌入维数 - `hidden_dim`: GRU 隐藏层维数 - `output_dim`: 输出维数 - `n_filters`: 卷积层过滤器数量 - `filter_sizes`: 卷积层过滤器大小 - `dropout`: dropout 概率 在 `__init__` 方法中,我们定义了模型的各个层。首先,我们定义了一个嵌入层,将单词索引转换为向量。然后,我们定义了一组卷积层,每个卷积层具有不同的过滤器大小。接下来,我们定义了一个 GRU 层。最后,我们定义了一个全连接层,将 GRU 的输出映射到所需的输出维度。 在 `forward` 方法中,我们首先使用嵌入层将输入文本转换为向量。然后,我们将向量变形为适合卷积层的形状,并将其输入到卷积层中。接下来,我们提取每个卷积层的最大池化特征,并将它们连接在一起。然后,我们将连接的特征输入到 GRU 中,并使用最后一个隐藏状态作为输出。最后,我们使用全连接层将 GRU 的输出映射到所需的输出维度。 ### 回答2: 使用PyTorch构建CNN-GRU模型,我们需要按照以下步骤进行: 1. 导入所需的库: ```python import torch import torch.nn as nn import torch.optim as optim ``` 2. 定义模型类: ```python class CNN_GRU(nn.Module): def __init__(self): super(CNN_GRU, self).__init__() self.cnn = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size), nn.ReLU(), nn.MaxPool2d(kernel_size), ) self.gru = nn.GRU(input_size, hidden_size, num_layers) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): x = self.cnn(x) x = x.view(x.size(0), -1) x = x.unsqueeze(0) _, hidden = self.gru(x) x = self.fc(hidden[-1]) return x ``` 3. 初始化模型: ```python model = CNN_GRU() ``` 4. 定义损失函数和优化器: ```python criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) ``` 5. 进行模型训练: ```python for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): outputs = model(images) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() ``` 6. 进行模型评估: ```python with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print('Accuracy: {}%'.format(accuracy)) ``` 通过以上步骤,我们可以使用PyTorch构建一个CNN-GRU模型,并进行训练和评估。请注意,根据实际情况,你可能需要调整模型的参数和超参数。 ### 回答3: PyTorch是一个流行的神经网络库,可以方便地实现深度学习模型。要构建一个CNN-GRU模型,可以按照以下步骤进行: 首先,我们需要导入所需的PyTorch模块。包括 torch,torch.nn以及torch.nn.functional等。 接下来,定义CNN部分。我们可以使用torch.nn中的Conv2d和MaxPool2d层构建卷积神经网络。可以根据需求定义多层卷积层。在每个卷积层之间,可以使用ReLU激活函数来增加非线性。最后,使用Flatten()函数将多维张量展平为一维张量。 然后,定义GRU部分。可以使用torch.nn中的GRU层构建循环神经网络。可以根据需要定义多层GRU层。GRU层需要输入的维度,隐藏状态的维度和层数作为参数。 然后,将CNN和GRU部分连接起来。可以使用torch.nn中的Sequential()函数来定义一个新的模型。将CNN部分和GRU部分以序列的方式添加到模型中。 接下来,定义前向传播函数。在前向传播函数中,首先将输入的数据通过CNN部分进行卷积和池化操作。然后将输出的特征图通过Flatten()函数展平为一维张量。最后,将展平后的特征图输入到GRU部分,得到最终的输出。 最后,定义模型的损失函数和优化器。可以使用torch.nn中的CrossEntropyLoss()作为损失函数,用于多分类任务。可以使用torch.optim中的优化器,如Adam或SGD,来优化模型的参数。 通过以上步骤,我们就可以构建一个基于CNN-GRU结构的模型。可以使用该模型进行图像分类、语音识别等任务。根据具体的应用场景和数据集,可能需要调整模型的结构和超参数,以获得更好的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值