文本分类中表征特征和选择方法的框架

探讨了特征加权方法及选定特征集对分类器性能的影响。通过分析特征的累积信息增益和稀疏表示,研究了不同加权方案下朴素贝叶斯分类器的表现,发现适当加权能提升分类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该框架用来表示特征加权方法和选定的特征集,并探究这些特征如何i影响分类器的性能。该框架选用两个特征集的表征特性来分析对分类器性能的影响程度。它们分别是特征的累积信息增益和所选特征集向量的稀疏表示。

需要弄清的两个问题(即如何分析使用该框架对分类器性能的影响):

1.满足特征函数N--F(N)的随机生成的特征排序有多接近有给定的加权方案产生的原始特征排列

2.与原始排列等级的偏差在何种程度上影响分类器的性能。

该框架以朴素贝叶斯分类器为例,结合五种加权方案,验证了使用不同加权方案对NavieBayes分类器性能的影响程度,并与原始特征排列下的分类器性能作了比较,得出如下结论:当结合不同的特征加权方案和综合特征排序的情况下,分类的器的性能比原始特征排序时的性能更好。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值