- 博客(521)
- 收藏
- 关注
原创 uni-app(6):Vue3语法基础下
本文主要介绍了uni-app中Vue.js的核心功能,包括列表渲染、事件处理和表单绑定三大部分。在列表渲染部分,详细讲解了v-for指令的使用方法,包括数组遍历、对象遍历、分组渲染和状态维护;事件处理部分阐述了事件监听、方法调用、修饰符使用等;表单绑定部分重点介绍了v-model的双向绑定机制及其在uni-app中的特殊适配。
2025-05-27 19:34:57
1209
原创 uni-app(5):Vue3语法基础上
Vue是一款渐进式前端框架,核心特点是响应式数据绑定和组件化开发。文章对比了Vue3相比Vue2的性能提升(快1.2-2倍)、体积更小等优势,并详细介绍了在uni-app中使用Vue的差异:文件结构转为.vue单文件组件、ES6模块化导入、MVVM数据绑定模式等。同时讲解了Vue的模板语法、条件渲染、样式绑定等核心功能,其中重点说明了v-if与v-show的区别:v-if是真正的条件渲染会销毁重建DOM,而v-show只是CSS显示切换。
2025-05-24 19:58:32
890
原创 uni-app(4):js语法、css语法
uni-app的JavaScript API由标准ECMAScript和uni扩展API组成,支持大部分ES6和ES7语法,如await/async。在H5端,代码运行于浏览器中,支持window、document等对象;在非H5端(如小程序和App),代码运行在独立的JS引擎中,不支持浏览器专用对象,但仍支持标准ECMAScript语法。uni-app的CSS与Web CSS基本一致,支持px、rpx等尺寸单位,rpx为响应式单位,可根据屏幕宽度自适应。
2025-05-23 18:52:18
1140
原创 uni-app(3):互相引用
在日常开发中,路径的选择(绝对路径与相对路径)对项目结构有重要影响。绝对路径从项目根目录开始,提供文件的确切位置,适合动态传递路径的场景。相对路径则基于文件或目录的相对位置,但在运行时可能因页面路由不同而产生问题,因此建议优先使用绝对路径。此外,Vue3.x和uni-app的easycom机制简化了组件引用流程,提高了开发效率。对于静态资源,uni-app支持通过import引入非static目录下的资源,并提供了详细的编译规则和注意事项,确保资源正确加载。
2025-05-22 17:06:44
1127
原创 uni-app(2):页面
uni-app项目中的页面管理基于Vue单文件组件(SFC)规范,支持.vue和.nvue文件,分别用于WebView和原生渲染。页面需在pages.json中注册,未注册的页面将被忽略。页面生命周期包括onLoad、onShow、onReady等,支持Vue2和Vue3的组合式API。页面内容由模板、脚本和样式三部分构成,模板区使用Vue组件,脚本区支持JavaScript和TypeScript,样式区与Web CSS类似。
2025-05-21 17:38:05
1228
原创 uni-app(1):介绍
uni-app 是一个基于 Vue.js 的跨平台开发框架,允许开发者编写一套代码,发布到 iOS、Android、Web 及多种小程序平台。DCloud 公司支持该框架,拥有庞大的开发者社区和丰富的插件生态。uni-app 的优势包括跨端兼容性、高性能、丰富的周边生态、低学习成本和开发成本。它支持条件编译和平台特有 API 调用,允许开发者为特定平台编写个性化代码。uni-app 的架构包括编译器和运行时,编译器将代码编译为各平台支持的格式,而运行时则在终端上执行这些代码。
2025-05-20 19:47:35
973
原创 Milvus(26):Rerankers
混合搜索通过同时进行多个近似最近邻(ANN)搜索来提高搜索结果的精确度。这种搜索方式会生成多组结果,需要通过重排策略来合并和重新排序这些结果,以返回一组最相关的搜索结果。Milvus支持两种重排策略:加权排名和RRFRanker(互易排名融合排名器)。加权排名策略通过为不同向量搜索的得分分配权重来合并结果,适用于需要强调特定向量场的场景。RRFRanker策略则根据排名的倒数来组合排名列表,适用于需要平衡不同向量场重要性的场景。选择适当的重排策略取决于是否需要在结果中强调特定的向量场。
2025-05-19 17:40:14
1015
1
原创 Milvus(25):搜索迭代器、使用分区密钥
在处理大规模数据检索时,ANNSearch的单次查询实体数量有限,无法满足需求。为此,SearchIterator提供了一种分页获取搜索结果的方法,通过设置每次返回的实体数和总数,循环调用next()方法获取结果,直到结果为空时关闭迭代器。此外,分区密钥(PartitionKey)是一种优化搜索效率的解决方案,通过指定标量字段作为分区密钥,并在搜索时根据分区密钥设置过滤条件,可以缩小搜索范围,提高性能。
2025-05-18 21:12:03
742
原创 Milvus(25):Elasticsearch 查询到 Milvus
Elasticsearch作为基于Apache Lucene的开源搜索引擎,在现代人工智能应用中面临更新成本高、实时性差、碎片管理效率低、非云原生设计及资源需求过高等挑战。相比之下,云原生向量数据库Milvus通过解耦存储和计算、高效的高维数据索引及与现代基础设施的无缝集成,克服了这些问题,为AI工作负载提供了卓越的性能和可扩展性。
2025-05-17 12:51:47
828
原创 Milvus(24):全文搜索、文本匹配
全文搜索是一种在文本数据集中检索包含特定术语或短语的文档,并根据相关性排序的功能。它克服了语义搜索的局限性,确保获得最准确且与上下文最相关的结果。全文搜索通过BM25算法进行相关性评分,特别适用于检索增强生成(RAG)场景。其工作流程包括文本输入、文本分析、函数处理、Collections存储和BM25评分。
2025-05-16 09:38:17
937
原创 Milvus(23):过滤
Milvus 提供了强大的过滤功能,支持通过多种操作符精确查询数据。这些操作符包括比较操作符(如等于、大于、小于等)、范围操作符(如 IN、LIKE)、算术操作符(如加、减、乘、除)、逻辑操作符(如 AND、OR、NOT)以及针对空值的 ISNULL 和 ISNOTNULL 操作符。此外,Milvus 还支持对 JSON 和 ARRAY 字段的查询,提供了如 JSON_CONTAINS、ARRAY_CONTAINS 等高级操作符,帮助用户根据特定条件过滤和检索数据。
2025-05-15 10:04:04
920
原创 Milvus(22):混合搜索、查询
混合搜索是一种结合多个近似最近邻(ANN)搜索并对结果进行重新排序的搜索方法,旨在提高搜索准确性。Milvus支持在具有多个向量字段的集合上进行混合搜索,适用于稀疏-密集向量搜索和多模态搜索。稀疏向量适合关键词匹配,而密集向量则捕捉语义信息。混合搜索的工作流程包括生成向量、创建集合、插入数据、执行搜索、归一化得分和重新排序。Milvus还支持通过查询进行元数据过滤,包括获取、查询和查询迭代器三种方式,用户可以根据主键或自定义条件过滤实体,并支持分区查询。
2025-05-14 09:54:26
998
原创 Milvus(21):过滤搜索、范围搜索、分组搜索
在 Milvus 中,过滤搜索根据应用过滤的阶段分为两种类型--标准过滤和迭代过滤。执行范围搜索请求时,Milvus 以 ANN 搜索结果中与查询向量最相似的向量为圆心,以搜索请求中指定的半径为外圈半径,以为内圈半径,画出两个同心圆。所有相似度得分在这两个同心圆形成的环形区域内的向量都将被返回。这里,可以设置为0,表示将返回指定相似度得分(半径)范围内的所有实体。半径和。使用指定的度量类型(COSINE)查找与查询向量最相似的所有向量嵌入。过滤与查询向量的距离或得分在半径和参数指定范围内的向量嵌入。
2025-05-13 09:44:19
1012
原创 Milvus(20):基本向量搜索
近似近邻(ANN)搜索是一种基于向量嵌入索引文件的搜索方法,用于高效查找与查询向量最相似的向量子集。与传统的k-NearestNeighbors(kNN)搜索不同,ANN搜索通过预建索引文件快速定位相似向量,减少了计算开销。Milvus系统支持ANN搜索,并提供单向量搜索和批量向量搜索功能,用户可以根据指定的度量类型(如内积、L2距离等)计算相似度并返回前K个结果。
2025-05-12 09:32:57
1176
原创 Milvus(19):标量索引、使用 GPU 建立索引
Milvus中的标量索引用于加速非向量字段的元过滤,支持自动和自定义索引类型。自动索引由Milvus根据字段类型自动选择,而自定义索引允许用户指定如反转索引或位图索引等类型。位图索引特别适用于低Cardinality字段,通过二进制格式和位操作提高查询效率。此外,Milvus支持使用GPU建立索引,如GPU_CAGRA、GPU_IVF_FLAT等,以提升大规模数据处理的性能。然而,GPU索引存在一些限制,如不支持COSINE距离和某些搜索功能。
2025-05-11 16:37:52
589
原创 Milvus(18):IVF_PQ、HNSW
IVF_PQ和HNSW是两种用于高维向量近似近邻搜索的索引算法。IVF_PQ结合了反转文件(IVF)和乘积量化(PQ),通过聚类和量化技术减少内存需求,适用于大规模数据集。其核心步骤包括向量聚类、分配、反向索引和搜索,PQ则通过子空间编码和量化压缩向量表示,显著降低存储需求。HNSW则基于多层图结构,通过分层搜索实现高效查询,具有高精度和低延迟,但内存开销较大。HNSW的构建和搜索过程涉及参数如M(最大连接数)和ef(搜索邻居数),这些参数影响索引的准确性和性能。两种算法各有优势,IVF_PQ适合内存受限的
2025-05-09 09:46:07
1108
原创 Milvus(17):向量索引、FLAT、IVF_FLAT
利用存储在索引文件中的元数据,Milvus 以专门的结构组织数据,便于在搜索或查询过程中快速检索所需的信息。Milvus 提供多种索引类型和指标,可对字段值进行排序,以实现高效的相似性搜索。下表列出了不同向量字段类型所支持的索引类型和度量。目前,Milvus 支持各种类型的向量数据,包括浮点嵌入(通常称为浮点向量或密集向量)、二进制嵌入(也称为二进制向量)和稀疏嵌入(也称为稀疏向量)。
2025-05-08 09:37:07
1221
原创 Milvus(16):索引解释
在 Milvus 中,索引是特定于字段的,适用的索引类型因目标字段的数据类型而异。作为专业的向量数据库,Milvus 注重提高向量搜索和标量过滤的性能,因此提供了多种索引类型。下表列出了字段数据类型与适用索引类型之间的映射关系。字段数据类型适用索引类型平面IVF_FLATIVF_SQ8IVF_PQGPU_IVF_PQHNSWDISKANN二进制向量BIN_FLAT稀疏浮点矢量稀疏反转索引变量反转(推荐)BITMAPTrieBOOLBITMAP(推荐)反转INT8。
2025-05-07 09:46:22
1140
原创 Milvus(15):插入和删除
在 Milvus 中,实体指的是中共享相同Schema的数据记录,行中每个字段的数据构成一个实体。因此,同一 Collections 中的实体具有相同的属性(如字段名称、数据类型和其他约束)。将实体插入 Collections 时,要插入的实体只有包含 Schema 中定义的所有字段才能成功添加。插入的实体将按插入顺序进入名为_default的分区。如果存在某个分区,也可以通过在插入请求中指定分区名称,将实体插入该分区。Milvus 还支持动态字段,以保持 Collections 的可扩展性。
2025-05-06 09:40:23
962
原创 Milvus(14):更改 Collections 字段、Schema 设计实践
用各种字段(包括元数据和用于图像和摘要数据的向量字段)定义 Schema 后,下一步就是准备索引参数。索引对于优化向量的搜索和检索、确保高效查询性能至关重要。一旦设置并应用了索引参数,Milvus 就能优化处理向量和标量数据的复杂查询。这种索引增强了 Collections 内相似性搜索的性能和准确性,可根据图像向量和摘要向量高效检索文章。通过利用针对密集向量的AUTOINDEX、针对稀疏向量的和针对标量的,Milvus 可以快速识别并返回最相关的结果,从而显著改善数据检索过程的整体用户体验和效率。
2025-05-05 13:22:30
1216
原创 Milvus(13):自定义分析器、过滤器
Milvus 中的standard令牌分割器根据空格和标点符号分割文本,适用于大多数语言。要配置使用standard令牌转换器的分析器,请在中将tokenizer设置为standard。标记符号分析器可与一个或多个过滤器结合使用。例如,以下代码定义了一个使用standard标记器和lowercase定义后,可以在定义 Collections Schema 时将它们应用到VARCHAR字段。这样,Milvus 就能使用指定的分析器对该字段中的文本进行处理,从而实现高效的标记化和过滤。
2025-05-04 14:05:59
990
原创 Milvus(12):分析器
对于更高级的文本处理,Milvus 中的自定义分析器允许您通过指定标记化器和过滤器来构建定制的文本处理管道。这种设置非常适合需要精确控制的特殊用例。标记化器是自定义分析器的必备组件,它通过将输入文本分解为离散单元或标记来启动分析器管道。标记化遵循特定的规则,例如根据标记化器的类型用空白或标点符号分割。这一过程可以更精确、更独立地处理每个单词或短语。例如,标记化器会将文本指定标记符的示例过滤器是可选组件,用于处理标记化器生成的标记,并根据需要对其进行转换或细化。例如,在对标记化术语应用lowercase。
2025-05-03 19:20:41
1399
1
原创 内部类(3):匿名内部类
contents() 方法将返回值的生成与表示这个返回值的类定义结合在一起。另外,这个类是匿名的,它没有名字。更糟糕的是,看起来似乎是你正要创建一个Contents对象。但是然后(在到达语句结束的分号之前)你却说:“等一等,我想在这里插入一个类的定义”。这种奇怪的语法指的是:“创建一个继承自Contents的匿名类的对象。”通过new表达式返回的引用被自动向上转型为对Contents的引用。在这个匿名内部类中,使用了默认的构造器来生成Contents。
2025-05-02 19:59:22
810
原创 Milvus(11):动态字段、可归零和默认值
在 Milvus 中,可以通过设置 Collections 中每个字段的名称和数据类型来创建 Collections Schema。向 Schema 中添加字段时,请确保该字段包含在要插入的实体中。如果希望某些字段是可选的,启用动态字段是一种选择。动态字段是一个名为$meta的保留字段,属于 JavaScript Object Notation(JSON)类型。实体中任何未在 Schema 中定义的字段都将以键值对的形式存储在这个保留的 JSON 字段中。
2025-04-30 09:36:17
771
原创 Milvus(9):字符串字段、数字字段
除了基本的数字字段过滤外,您还可以将向量相似性搜索与数字字段过滤器结合起来。除了基本的标量字段筛选外,您还可以将向量相似性搜索与标量字段筛选结合起来。在 Milvus 中,对于向量字段必须建立索引,但对于标量字段可选。在 Milvus 中,对于向量字段必须建立索引,但对于标量字段可选。不过,这可能会增加查询和管理的复杂性,并可能影响性能。定义好 Schema 和索引后,创建一个包含字符串字段的 Collection。定义好 Schema 和索引后,创建一个包含数字字段的 Collection。
2025-04-28 10:33:45
821
原创 Milvus(8):密集向量、二进制向量、稀疏向量
密集向量通常表示为具有固定长度的浮点数数组,如。这些向量的维度通常从数百到数千不等,如 128、256、768 或 1024。每个维度都能捕捉对象的特定语义特征,通过相似性计算使其适用于各种场景。上图展示了密集向量在二维空间中的表现形式。每个点代表一个概念对象(如Milvus向量数据库检索系统等),其位置由其维度值决定。点之间的距离反映了概念之间的语义相似性。距离较近的点表示语义关联度较高的概念。相关概念(如Milvus向量数据库和检索系统)在空间中的位置相互靠近,形成语义聚类。下面是一个代表文本。
2025-04-27 10:14:46
1121
原创 springboot3 声明式 HTTP 接口
在 Spring 6 和 Spring Boot 3 中,我们可以使用 Java 接口来定义声明式的远程 HTTP 服务。这种方法受到 Feign 等流行 HTTP 客户端库的启发,与在 Spring Data 中定义 Repository 的方法类似。声明式 HTTP 接口包括用于 HTTP exchange 的注解方法。我们可以通过使用带注解的 Java 接口来简单地表达远程 API 的细节,然后让 Spring 生成实现该接口并执行 exchange 的代理。这有助于减少样板代码的编写。
2025-04-25 13:26:19
1374
原创 Milvus(7):Schema、主字段和自动识别
Schema 定义了 Collections 的数据结构。在创建一个 Collection 之前,你需要设计出它的 Schema。本页将帮助你理解 Collections 模式,并自行设计一个示例模式。在 Zilliz Cloud 上,Collection Schema 是关系数据库中一个表的组合,它定义了 Zilliz Cloud 如何组织 Collection 中的数据。设计良好的 Schema 至关重要,因为它抽象了数据模型,并决定能否通过搜索实现业务目标。
2025-04-25 09:28:16
1132
原创 Milvus(6):Collection 管理分区、管理别名
创建一个 Collection 时,Milvus 也会在该 Collection 中创建一个名为_default 的分区。如果不添加其他分区,所有插入到 Collections 中的实体都会进入默认分区,所有搜索和查询也都在默认分区内进行。可以添加更多分区,并根据特定条件将实体插入其中。这样就可以限制在某些分区内进行搜索和查询,从而提高搜索性能。一个 Collections 最多可以有 1,024 个分区。功能是基于分区的搜索优化,允许 Milvus 根据特定标量字段中的值将实体分配到不同的分区中。
2025-04-24 09:41:16
661
原创 Milvus(5):Collections 查看、修改、加载和释放、删除
可以获取当前连接的数据库中所有 Collections 的名称列表,并查看特定 Collections 的详细信息。
2025-04-24 09:25:19
1098
原创 Milvus(4):创建 Collections
Collection 是一个二维表,具有固定的列和变化的行。每列代表一个字段,每行代表一个实体。要实现这样的结构化数据管理,需要一个 Schema。要插入的每个实体都必须符合 Schema 中定义的约束条件。你可以确定 Collections 的方方面面,包括其 Schema、索引参数、度量类型,以及是否在创建时加载,以确保集合完全满足你的要求。要创建一个 Collection,您需要创建 Schema设置索引参数(可选)创建 Collections。
2025-04-23 09:49:59
1040
原创 Milvus(3):数据库、Collections说明
在 Milvus 中,数据库是组织和管理数据的逻辑单元。为了提高数据安全性并实现多租户,你可以创建多个数据库,为不同的应用程序或租户从逻辑上隔离数据。例如,创建一个数据库用于存储用户 A 的数据,另一个数据库用于存储用户 B 的数据。
2025-04-22 09:39:15
1221
原创 Milvus(2):安装Milvus
Milvus 是一个高性能、可扩展的向量数据库。它支持各种规模的用例,从在 Jupyter Notebooks 中本地运行的演示到处理数百亿向量的大规模 Kubernetes 集群。目前,Milvus 有三种部署选项:Milvus Lite、Milvus Standalone 和 Milvus Distributed。
2025-04-21 10:02:01
808
原创 Milvus(1):什么是 Milvus
Milvus 由 Zilliz 开发,并很快捐赠给了 Linux 基金会下的 LF AI & Data 基金会,现已成为世界领先的开源向量数据库项目之一。它采用 Apache 2.0 许可发布,大多数贡献者都是高性能计算(HPC)领域的专家,擅长构建大规模系统和优化硬件感知代码。核心贡献者包括来自 Zilliz、ARM、英伟达、AMD、英特尔、Meta、IBM、Salesforce、阿里巴巴和微软的专业人士。
2025-04-20 15:45:38
1109
原创 Python FastApi(14):自定义响应
您可能希望有一些应用于许多路径操作的预定义响应,但是你想将不同的路径和自定义的响应组合在一块。对于这些情况,你可以使用Python的技术,将dict与可以使用该技术在路径操作中重用一些预定义的响应,并将它们与其他自定义响应相结合。
2025-04-06 15:01:19
986
原创 Python FastApi(12):表单数据
接收的不是 JSON,而是表单字段时,要使用Form。需预先安装。从fastapi导入Form创建表单(Form)参数的方式与Body和Query例如,OAuth2 规范的 "密码流" 模式规定要通过表单字段发送username和password。该规范要求字段必须命名为username和password,并通过表单字段发送,不能用 JSON。使用Form可以声明与Body(及QueryPathCookie)相同的元数据和验证。声明表单体要显式使用Form。
2025-04-03 09:37:24
920
原创 Python FastApi(10):响应模型
你可以在任意的路径操作中使用它接收的类型与你将为 Pydantic 模型属性所声明的类型相同,因此它可以是一个 Pydantic 模型,但也可以是一个由 Pydantic 模型组成的list,例如List[Item]。FastAPI 将使用此路径操作响应模型在参数中被声明,而不是作为函数返回类型的注解,这是因为路径函数可能不会真正返回该响应模型,而是返回一个dict、数据库对象或其他模型,然后再使用来执行字段约束和序列化。
2025-04-01 09:37:40
972
dataease恢复资料包
2025-01-22
ERP进销存系统需求规格说明
2024-10-14
java系统用户相关的entity、service、mapper类
2024-10-14
linux系统docker离线镜像apollo-2.2.0镜像资源
2024-10-12
MyOffice办公系统的需求分析与设计方案
2024-09-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人