- 博客(5)
- 收藏
- 关注
原创 深入理解优化算法:数学原理与实际应用的全景视图
本文介绍了神经网络优化中的核心算法——梯度下降法。该算法通过沿损失函数梯度反方向迭代更新参数,逐步逼近最小值。文章详细解析了梯度的数学定义与计算过程,重点讨论了学习率对收敛性的影响(过大导致发散,过小降低效率),并针对局部最小值和鞍点问题,介绍了动量梯度下降等改进方法。这些优化策略为神经网络的高效训练提供了理论基础,是深度学习取得优异性能的关键技术支撑。
2025-07-04 13:40:51
386
原创 误差、梯度与优化:神经网络损失函数的数学本质
神经网络损失函数的数学本质解析 损失函数是神经网络模型优化的核心工具,它量化了预测值与真实值之间的差异。本文探讨了两种常见损失函数:均方误差(MSE)和交叉熵损失。MSE适用于回归任务,计算预测值与真实值的平方差均值,但对异常值敏感;交叉熵损失则用于分类问题,衡量概率分布间的差异。优化目标是通过梯度下降等方法最小化损失函数,但由于神经网络损失函数通常是非凸的,优化过程可能陷入局部最小值。理解损失函数的数学本质对于设计高效神经网络模型至关重要。
2025-07-02 21:26:31
897
原创 矩阵运算的魅力:如何用简单的数学构建强大的神经网络?
矩阵运算:神经网络的高效引擎 神经网络的核心计算依赖于矩阵运算,它贯穿了前向传播和反向传播的每个环节。通过矩阵表示连接权重和输入数据,神经网络能够高效地处理信息传递和梯度计算。在前向传播中,矩阵乘法连接各层神经元;在反向传播中,矩阵转置和乘法用于梯度计算。优化技巧如矩阵分解(SVD)可以提升运算效率。矩阵运算不仅简化了神经网络的计算过程,还使其能够高效处理大规模数据,成为神经网络快速训练和推理的关键技术基础。
2025-07-01 11:21:08
766
原创 激活函数的选择:神经网络中的“非线性”之美
激活函数是神经网络实现非线性拟合的关键组件。本文探讨了激活函数的作用原理及常见类型,包括Sigmoid、ReLU和Tanh函数。Sigmoid函数适合处理概率问题但存在梯度消失缺陷;ReLU函数计算高效但可能导致神经元"死亡";Tanh函数以零为中心输出。文章分析了激活函数对梯度消失/爆炸问题的影响,以及不同函数在计算复杂度和收敛速度上的差异。合理选择激活函数对神经网络性能至关重要,需根据具体任务权衡各函数的优缺点。
2025-06-30 22:51:45
685
原创 神经网络的起源:从生物神经元到人工神经元的数学抽象
神经网络作为人工智能的核心技术,其灵感源自人类大脑的生物神经元结构。文章从生物神经元(含细胞体、树突、轴突)的电信号传递机制出发,揭示其与人工神经元模型的数学对应关系:生物突触权重对应人工权重参数,动作电位阈值对应偏置项,神经递质释放过程由激活函数模拟。通过公式y=f(∑w_i·x_i+b)的数学抽象,人工神经元成功复现了生物神经元的"输入-加权求和-阈值激活"特性。这种跨学科的建模方法不仅揭示了大脑运作原理,更为深度学习的发展奠定了理论基础。
2025-06-30 17:33:22
1070
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人