
在神经网络的训练过程中,优化算法是实现模型学习的关键。

而梯度下降法作为最经典的优化算法之一,被广泛应用于各种机器学习和深度学习任务中。
今天,就让我们深入探讨梯度下降法的数学原理,了解它是如何帮助神经网络找到最优解的。
一、梯度下降法的基本思想
梯度下降法是一种用于寻找函数最小值的优化算法。它的基本思想非常直观:
想象一下,你站在一座高山的山顶,目标是找到山脚下最低的谷底。你应该如何行动呢?

最直观的方法就是沿着最陡峭的方向向下走,每一步都尽可能地降低自己的高度。
梯度下降法正是基于这一思想,通过迭代更新参数,逐步逼近函数的最小值。

在神经网络中,我们需要最小化的是损失函数 L ( θ ) \mathcal{L}(\theta) L(θ),其中 θ \theta θ 是模型的参数(包括权重和偏置)。
🏃 梯度下降法的核心公式为:
θ new = θ old − η ∇ θ L ( θ ) \theta_{\text{new}} = \theta_{\text{old}} - \eta \nabla_{\theta} \mathcal{L}(\theta) θnew=θold−η∇θL(θ)
其中,
η
\eta
η 是学习率,控制每次更新的步长;
∇
θ
L
\nabla_{\theta} \mathcal{L}
∇θL 是损失函数对参数的梯度,表示损失函数在当前参数处的变化方向和速度。
二、梯度的数学定义与计算
梯度是梯度下降法的灵魂。那么,什么是梯度呢?
梯度
是梯度下降法的核心概念,它是一个向量,表示函数在某一点处的变化率最大的方向和大小。
在神经网络中,损失函数通常是关于权重和偏置的复杂函数。为了计算梯度,我们需要借助链式法则(Chain Rule)。

链式法则则允许我们通过逐层计算偏导数,将损失函数对每个参数的梯度分解为多个部分的乘积。
例如,对于一个简单的两层神经网络,损失函数 L L L 对权重 w w w 的梯度可以表示为:
∂ L ∂ w = ∂ L ∂ y ⋅ ∂ y ∂ w \frac{\partial L}{\partial w} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial w} ∂w∂L=∂y∂L⋅∂w∂y
其中, y y y 是神经网络的输出, ∂ L ∂ y \frac{\partial L}{\partial y} ∂y∂L 表示损失函数对输出的敏感度, ∂ y ∂ w \frac{\partial y}{\partial w} ∂w∂y 表示输出对权重的依赖关系。
通过这种方式,我们可以高效地计算出每个参数的梯度,从而为参数更新提供方向。
三、损失函数的优化目标
虽然梯度下降法的思路简单直观,但它在实际应用中却面临着诸多挑战。
其中最重要的就是收敛性问题。
3.1 学习率的影响
学习率(Learning Rate)是梯度下降法中的关键超参数,它决定了我们在梯度方向上迈出的步长。
- 如果学习率过大,我们可能会直接跨越损失函数的最小值,导致算法发散;
- 如果学习率过小,虽然能够保证收敛,但收敛速度会非常缓慢,训练时间会大大增加。

为了更好地理解学习率的影响,我们可以观察一个简单的二次函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2 的梯度下降过程。
假设初始点为 x = 10 x = 10 x=10,梯度为 d f d x = 2 x \frac{df}{dx} = 2x dxdf=2x。
如果学习率设置为 0.1 0.1 0.1,那么每次更新的步长为 0.1 × 2 x 0.1 \times 2x 0.1×2x。
随着 x x x 的逐渐减小,步长也会相应减小,最终收敛到 x = 0 x = 0 x=0。
但如果学习率设置为 1.1 1.1 1.1,那么每次更新的步长为 1.1 × 2 x 1.1 \times 2x 1.1×2x。
这将导致 x x x 在 0 0 0 的两侧不断振荡,无法收敛。
选择合适的学习率是梯度下降法成功的关键。在实际应用中,有多种方法可以帮助我们选择和调整学习率。
-
固定学习率:这是最简单的方法,即在整个训练过程中保持学习率不变。
-
学习率衰减:随着训练的进行,逐渐减小学习率。
常见的衰减策略包括指数衰减、分段常数衰减等
。 -
自适应学习率调整:根据每个参数的梯度历史动态调整学习率。
例如,AdaGrad(Adaptive Gradient Algorithm)
。
3.2 局部最小值与鞍点
在复杂的神经网络中,损失函数通常是一个高维非凸函数,存在许多局部最小值和鞍点。
-
局部极小值是指在某个区域内,损失函数的值达到最小,但并不是全局最小值;
-
鞍点则是指在某个方向上是极小值,而在另一个方向上是极大值的点。

梯度下降法在遇到这些情况时,很容易陷入局部最小值或在鞍点附近徘徊,难以找到全局最小值。为了应对这些问题,研究人员提出了许多改进策略。
例如,动量梯度下降法(Momentum Gradient Descent)通过引入动量项,为梯度下降过程添加了惯性,使其能够更快地穿越局部最小值和鞍点。
🧮 动量项的计算方式为:
v t + 1 = β v t + η ∇ f ( x t ) v_{t+1} = \beta v_t + \eta \nabla f(x_t) vt+1=βvt+η∇f(xt)
x t + 1 = x t − v t + 1 x_{t+1} = x_t - v_{t+1} xt+1=xt−vt+1
其中, v v v 是动量项, β \beta β 是动量系数, η \eta η 是学习率, ∇ f ( x t ) \nabla f(x_t) ∇f(xt) 是当前点的梯度。
动量项 v v v 保留了之前梯度的方向和大小,使得在连续的迭代中,梯度方向能够保持一定的稳定性,从而帮助算法更快地收敛。
梯度下降法作为神经网络优化的核心算法,其数学原理虽然复杂,但背后的思想却简单直观。它通过沿着损失函数梯度的反方向更新参数,逐步逼近最小值。
梯度计算是梯度下降法的核心,而学习率的选择和调整策略则直接影响优化的效率和收敛性。
此外,动量梯度下降法等变种算法通过引入额外的机制,进一步提高了优化性能,解决了标准梯度下降法的一些不足。
注:本文中未声明的图片均来源于互联网