Pytorch基础-对张量的定义、运算和维度操作全解析(1)

本文详细介绍了张量的概念,它是数据结构的基础,尤其在深度学习中扮演重要角色。张量可以是标量、向量、矩阵或更高维度的数据表示。在Python中,张量可以通过NumPy和PyTorch进行操作,包括初始化、索引、切片、运算和转换。此外,张量与NumPy数组之间可以无缝转换,共享内存,使得数据处理更加便捷。张量的运算涵盖加法、乘法、转置等,对于处理图像、视频、时间序列等不同类型数据集尤为关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是张量tensor?

张量是一种特殊的数据结构,与数组和矩阵非常相似。类似于Numpy 的ndarray。 在 PyTorch 中,我们使用张量对模型的输入和输出以及模型的参数进行编码。 张量都可以通过Numpy来定义、操作,通常存储在Nunpy数组,所以这就需要我们把数据转换为Numpy数组,目的就是把所有的输入数据转变为一个统一的标准,以便能够容易的处理。

张量是根据一共具有多少坐标轴来定义。比如可以把二维张量看作为一个带有行和列的数字网格。这个行和列表示两个坐标轴,一个矩阵就是二维张量,矩阵的每一行或每一列,都可以视为一维张量(向量)。如果把一系列的二维张量存储在列表中,这就形成了三维张量。你也可以把三维张量视为一个有长宽高立方体,张量能够被转换和操作,使列变为行或者行变为列。

维度是指在一个数据轴上的许多点,也就是样本的个数或者特征的个数。

张量的每一个数据轴,统称为阶。因此说一阶(1D)向量,二阶向量,三阶向量,而不是说维。

0D张量/标量 标量是一个数字

1D张量/向量 称为“向量”。只有一个坐标轴。 可以把向量视为一个单列的数字。

2D张量 2维张量称为矩阵也就是有两个坐标轴的张量。

3D张量 公用数据存储在张量 字符串文本,视频, 彩色图片(RGB),三维张量有三个坐标轴

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只小小的土拨鼠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值