#作者:曹付江
文章目录

零代码实战项目开发部署全流程指南
- DeepSeek(AI设计)、
- Cursor(AI编码)、
- Devbox(环境管理)、
- Sealos(云部署)
一、项目背景与工具定位
1.1 工具分工
- DeepSeek:需求分析、架构设计、文档生成
- Cursor:AI生成代码、自动补全、代码优化
- Devbox:创建隔离开发环境,管理依赖
- Sealos:一键部署应用到云环境(Kubernetes集群)
1.2目标项目
比如开发一个 AI 天气预警系统:
- 输入城市名,返回天气数据及异常预警
- 技术栈:Python + FastAPI + Redis + TensorFlow Lite
二、详细操作流程
阶段 1:AI 辅助设计(DeepSeek)
①需求生成
向 DeepSeek 输入提示词:
"设计一个天气预警系统,包含用户输入接口、天气数据获取、AI异常检测模块,输出技术方案文档。"
输出:API 定义、模块划分、数据流图。
a)架构设计
追问 DeepSeek:
"给出基于 FastAPI 的三层架构设计,包含 Redis 缓存和轻量级 AI 模型部署方案。"
输出:服务端架构图、技术选型建议。
阶段 2:AI 生成代码(Cursor)
① 创建项目目录
mkdir weather-alert && cd weather-alert
devbox init # 初始化 Devbox 环境
②生成核心代码
在 Cursor 中按 Cmd+K,输入:
"用 FastAPI 编写一个天气接口,城市参数为路径参数,集成 Redis 缓存,代码分路由层、服务层、模型层。"
输出:自动生成 main.py、services/weather.py、models/predict.py。
③添加 AI 模型逻辑
输入提示词:
markdown
复制
"在 FastAPI 中添加 TensorFlow Lite 模型推理代码,输入温度、湿度,输出异常概率。"
输出:生成模型加载和预测代码。
阶段 3:环境配置(Devbox)
①定义依赖
devbox add python3.11 redis tensorflow-lite
devbox shell # 进入隔离环境
②自动生成配置文件
devbox generate lockfile # 生成 devbox.lock
阶段 4:测试与联调
①AI 生成测试用例(Cursor)
在测试文件中按 Cmd+K,输入:
"为 FastAPI 天气接口编写 Pytest 测试用例,覆盖正常请求、缓存命中、异常检测场景。"
输出:生成 tests/test_api.py。
②运行测试
devbox run – pytest tests/ -v
阶段 5:一键部署(Sealos)
1)生成 Dockerfile(Cursor)
输入提示词:
"生成多阶段构建的 Dockerfile,基于 Python 3.11,包含 Redis 依赖和模型文件打包。"
输出:生成优化后的 Dockerfile。
2)推送镜像到 Sealos
sealos build -t registry.sealos.io/yourname/weather-alert:latest .
sealos push registry.sealos.io/yourname/weather-alert:latest
3)部署到 Kubernetes
在 Sealos 控制台:
- 选择应用模板
- 绑定域名 weather.yourdomain.com
- 设置自动扩缩容策略
三、关键问题与解决方案
问题 | 工具应对方案 |
---|---|
代码依赖冲突 | Devbox 锁定版本 + 隔离环境 |
模型文件过大导致镜像臃肿 | Sealos 分片上传 + 延迟加载 |
API 性能瓶颈 | DeepSeek 分析日志生成优化建议 |
四、系统调优
1.AI 调优:用 DeepSeek 分析 Prometheus 监控数据,生成性能优化代码补丁
2.Sealos 弹性扩展:根据 QPS 自动调整 Pod 副本数
3.零代码更新:在 Cursor 中输入需求变更描述,自动生成 PR 并触发 CI/CD
五、最终效果演示与总结
- 效果展示:项目从设计到部署的完整演示,包含运行界面、实时数据、后端日志。
- 总结经验:如何利用AI工具提高开发效率,降低出错率,实现DevOps全自动化