求组合数 :DP、逆元+快速幂

本文探讨了在素数模意义下求解组合数Cnm%p的问题,提供了两种解决方案:动态规划和逆元结合快速幂。前者利用递推公式避免溢出,后者通过逆元将除法转为乘法,适用于大数运算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要求:求 C n m % p C_{n}^m \% p Cnm%p ,p为素数(经典p=1e9+7)
【思路】
在这里插入图片描述不取余又容易溢出,因此不能直接使用该公式。


方法一:DP

C[n][m]= C n m C_{n}^m Cnm
公式 C n m = C n − 1 m − 1 + C n − 1 m C_{n}^m=C_{n-1}^ {m-1}+C_{n-1}^{m} Cnm=Cn1m1+Cn1m
证明:班级中有n个人,选出m个人开除,有两种选法:

  • 班长不开除,从剩下的人中开除m个人
  • 开除班长,从剩下的人中开除m-1个人
const int MOD = 1e9 + 7;
int C[1005][1005]{};
C[0][0] = 1;
for (int i = 1; i <= 1000; i++) {
    C[i][0] = 1;
    for (int j = 1; j <= i; j++)
        C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD;
}

时间复杂度:O(n²)


方法二:逆元+快速幂

如果能把“除法”转换成“乘法”,就可以借助取模的性质在不爆long long的情况下计算组合数。这时候就需要用到“逆元”!

逆元:对于a和p,若a*b%p≡1,则称b为a%p的逆元。

那这个逆元有什么用呢?
试想一下求 a b % p \cfrac{a}{b} \%p ba%p,如果你知道b%p的逆元是c ,即(bc%p≡1),那么就可以转变成
a b % p = a b ∗ ( b c % p ) % p = a ∗ c % p = ( a % p ) ( c % p ) % p \cfrac{a}{b} \%p = \cfrac{a}{b}*(bc\%p) \%p=a*c\%p = (a\%p)(c\%p)\%p ba%p=ba(bc%p)%p=ac%p=(a%p)(c%p)%p

求逆元就需要引入费马小定理:
假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)。即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。

在这里插入图片描述
简要概述:
若c为b的逆元,即 c ∗ b % p ≡ 1 c*b\%p≡1 cb%p1,则 a b % p = a ∗ c % p \cfrac{a}{b} \%p =a*c\%p ba%p=ac%p
逆元求法: c = b p − 2 c=b^{p-2} c=bp2

//逆元+快速幂
const int MOD = 1e9 + 7;
using ll = long long;
ll fac[1000 + 5];//阶乘,fac[i]表示 i!%MOD
ll rev[1000 + 5];//逆元
//快速幂求x^n%MOD
ll quickPow(ll x, ll n) {
    ll res = 1;
    while (n) {
        if (n & 1)
            res = res * x % MOD;
        x = x * x % MOD;
        n >>= 1;
    }
    return res;
}
int C(int n, int m) {
    return fac[n] * rev[m] % MOD * rev[n-m] % MOD;
}
int main() {
    //预处理求fac,fac[i] = i!%p
    fac[0] = 1,rev[0]=1;
    for (int i = 1; i <= 1000; i++){
        fac[i] = fac[i - 1] * i % MOD;
        rev[i] = quickPow(fac[i] ,MOD-2);
    }
    cout << C(1000, 100);
    getchar();
    exit(0);
}


l o g 2 ( 1 e 9 + 7 ) ≈ 30 log_2(1e9+7)≈30 log2(1e9+7)30
时间复杂度:O(n)


参考:
https://www.cnblogs.com/liziran/p/6804803.html

第一阶段:搜索算法核心突破(3.25-3.28 | 4天) 3.25-3.26:DFS基础与剪枝 学习内容:回溯模板、排列/子集生成、剪枝技巧(可行性/最优性剪枝) 真题练习: 全排列问题(第七届《凑算式》变种) 迷宫路径计数(二维矩阵搜索) 3.27-3.28:BFS与连通性问题 学习内容:队列实现BFS、层序遍历、连通块计数 真题练习: 第七届《剪邮票》(DFS验证5格连通性) 岛屿数量问题(连通块计数) 第二阶段:动态规划专题(3.29-4.1 | 4天) 3.29-3.30:线性DP与递推 学习内容:爬楼梯模型、打家劫舍变种、递推公式设计 真题练习: 第七届《煤球数目》(直接递推) 第十四届《接龙数列》(字符串状态转移)3.31-4.1:背包DP与字符串DP 学习内容:01背包模板、滚动数组优化、最长公共子序列 真题练习: 第十二届《砝码称重》(01背包变种) 编辑距离问题(字符串DP) 第三阶段:数论+贪心强化(4.2-4.4 | 3天) 4.2:质数与GCD 学习内容:埃氏筛法、欧几里得算法、因数分解 真题练习:第十二届《货物摆放》(因数组合) 4.3:快速幂与模运算 学习内容:快速幂模板、逆元计算(选学) 真题练习:大数取模问题(如计算10^{18} \mod 710 18 mod7) 4.4:贪心策略 学习内容:区间调度、相邻交换策略 真题练习:第四届《翻硬币》(贪心翻转)、第九届《乘积最大》 第四阶段:数据结构+图论(4.5-4.7 | 3天)4.5:并查集与优先队列 学习内容:路径压缩、按秩合并、Dijkstra堆优化 真题练习:第十二届《城邦》(并查集预处理) 4.6:栈与图论基础 学习内容:表达式计算、Dijkstra最短路径 真题练习:第十二届《路径》(Dijkstra模板题) 4.7:拓扑排序与最小生成树 学习内容:Kahn算法、Kruskal实现 真题练习:第十四届《飞机降落》(拓扑排序思想)第五阶段:二分+综合复习(4.8-4.10 | 3天) 4.8:二分查找与答案 学习内容:边界处理、最大值最小化问题 真题练习:第十二届《直线》(排序去重+二分优化) 4.9-4.10:全真模拟与查漏补缺 任务:限时刷近3年真题(重点做搜索、DP、数论题) 错题复盘:整理易错代码片段(如DFS状态遗漏、DP初始化错误)时间完全不够 我3.25-3.29都没把DFS要学习的内容学完也还没加以联系,这份安排太紧凑了,难以让我真的深入理解这些算法,只能明白个模板,帮我再做一份学习计划吧,可以删减些比赛出现可能性相对较低的算法或者算法中的学习内容,以留下广东省十六届以前蓝桥杯c赛道b组出现频率最高能覆盖尽量多考试类型的算法,帮我再精简筛选一下,然后按照在2025年广东省蓝桥杯c赛道b组可能出现的频率的顺序帮我重新安排一下学习内容,以助我拿下奖项。从3.30开始给我从新安排一下,现在学了DFS的迷宫,全排列,回溯模板,但还没加以真题练习
最新发布
03-30
### 线性时间复杂度计算组合数的算法 #### 组合数定义 组合数 \( C(n, m) \) 表示从 \( n \) 个不同元素中选取 \( m \) 个元素的方法总数。其数学公式为: \[ C(n, m) = \frac{n!}{m!(n-m)!} \] 直接通过该公式的阶乘运算会带来较高的时间和空间开销,尤其是在 \( n \) 较大时。 --- #### 线性组合数的核心思路 为了在线性时间内计算组合数,可以利用动态规划的思想以及预处理技术减少重复计算。以下是两种常见的方式: 1. **基于前缀积和逆元的优化** 利用模意义下的快速幂和费马小定理,在线性时间内完成组合数的计算。 2. **递推关系式** 使用组合数之间的递推性质 \( C(n, m) = C(n-1, m-1) + C(n-1, m) \),并通过迭代而非递归实现。 这两种方法都可以达到近似线性的效率。 --- #### 方法一:基于前缀积和逆元的优化 此方法适用于需要频繁查询大量组合数的情况,尤其适合在模素数下运行。 ##### 步骤说明 1. 预先计算 \( fact[i] \) 和 \( inv\_fact[i] \),分别代表 \( i! \% mod \) 和 \( (i!)^{-1} \% mod \)。 2. 计算任意组合数 \( C(n, m) \mod p \) 可以通过以下公式得到: \[ C(n, m) = fact[n] \times inv\_fact[m] \times inv\_fact[n-m] \ (\text{mod } p) \] 3. 整体时间复杂度为 \( O(n) \),其中 \( n \) 是预先设定的最大范围。 ##### Python 实现代码 ```python MOD = int(1e9 + 7) def precompute_factorials(max_n, mod=MOD): """预处理阶乘及其逆元""" fact = [0] * (max_n + 1) inv_fact = [0] * (max_n + 1) fact[0] = 1 for i in range(1, max_n + 1): fact[i] = fact[i - 1] * i % mod inv_fact[max_n] = pow(fact[max_n], mod - 2, mod) # 费马小定理求逆元 for i in range(max_n - 1, -1, -1): inv_fact[i] = inv_fact[i + 1] * (i + 1) % mod return fact, inv_fact def comb(n, m, fact, inv_fact, mod=MOD): """计算组合数 C(n, m)""" if m < 0 or m > n: return 0 return fact[n] * inv_fact[m] % mod * inv_fact[n - m] % mod # 测试 max_n = 100000 fact, inv_fact = precompute_factorials(max_n) print(comb(10, 3, fact, inv_fact)) # 输出应为 120 ``` 此处使用了费马小定理来加速逆元的计算[^3]。 --- #### 方法二:递推关系式 如果只需要单次计算少量组合数,则可以通过递推公式直接计算而无需额外存储。 ##### 数学原理 由组合数的递推公式可知: \[ C(n, m) = C(n-1, m-1) + C(n-1, m) \] 初始条件为 \( C(n, 0) = 1 \) 和 \( C(n, n) = 1 \)。 ##### Python 实现代码 ```python def compute_combination(n, m): """通过递推公式计算组合数 C(n, m)""" dp = [[0] * (m + 1) for _ in range(n + 1)] for i in range(n + 1): dp[i][0] = 1 for j in range(m + 1): if j <= i: dp[j][j] = 1 for i in range(1, n + 1): for j in range(1, min(i, m) + 1): dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j] return dp[n][m] # 测试 print(compute_combination(10, 3)) # 输出应为 120 ``` 这种方法的空间复杂度较高,但如果仅保存当前层和上一层的数据,则可将其降至 \( O(\min(n, m)) \)[^4]。 --- #### 复杂度分析 | 方 法 | 时间复杂度 | 空间复杂度 | |------|------------|------------| | 前缀积与逆元 | \( O(n) \) 初始化;\( O(1) \) 查询 | \( O(n) \) 存储阶乘表 | | 递推公式 | \( O(n \cdot m) \) 构建表格 | \( O(n \cdot m) \) 或更低 | 对于大规模输入推荐使用前一种方法。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值