
ml
十年空空梦
代码改变世界!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
lgb实际使用数据格式和增量训练
lgb实际使用数据格式和增量训练原创 2024-10-17 12:27:54 · 333 阅读 · 0 评论 -
pandas在单条时耗时是循环操作的百倍,模型训练尽量避免使用
摘要:测试显示pandas处理单条数据时效率极低,耗时是纯循环操作的100倍。在深度学习数据预处理中,应避免创建DataFrame处理单条样本。测试案例对比了两种实现方式:pandas方法耗时1.56ms,而使用numpy和字典的纯循环方法仅需13.1μs。建议在模型训练数据流中直接使用numpy数组和字典操作,特别是对于需要频繁处理单条数据的场景,可显著提升性能。关键优化点包括:避免DataFrame创建、使用numpy替代pandas向量化操作、采用字典处理映射关系。原创 2024-10-17 12:26:43 · 146 阅读 · 0 评论