tensorflow-gpu 配置安装【精简备忘】

本文详细介绍如何在GPU环境下正确安装和配置TensorFlow,包括卸载CPU版本、安装CUDA、cuDNN以及设置环境变量的具体步骤,确保TensorFlow能够顺利运行在GPU上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先确定GPU支持:

如果装了cpu版: pip uninstall tensorflow

依赖官方解释:https://tensorflow.google.cn/install/gpu

 

主要安装三个东西:tensorflow-gpu、CUDA、cuDNN 和 %环境变量%

1、pip install tensorflow-gpu

2、目前官方支持9.0(10.0好像也可以),CUDA:https://developer.nvidia.com/cuda-90-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal

路径可改,其他默认下一步,安装后打开安装目录……/CUDA Samples/v9.0,等会将cuDNN解压到此目录下

 

 

3、cuDNN:https://developer.nvidia.com/rdp/cudnn-download

选相应版本及相应系统

解压到……/CUDA Samples/v9.0/

 

4、配置环境变量(3个):

……/CUDA Samples/v9.0/bin

……/CUDA Samples/v9.0/cuda/bin

……/CUDA Samples/v9.0/cuda/lib/x64

 

至此 成功import tensorflow即表示配置成功,运行session会出现gpu字样。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值