文章目录
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
一、什么是RNN?
RNN:Recurrent Neural Network,用于处理序列数据。和传统神经网络不同的点在于,当前一层的输出会被当做输入,带到下一个隐藏层中,进行训练,于是除了第一层,RNN中每一个隐藏层的输入都包含两个部分【上一层的输出和当前层的输入】,如教案中给出的简易示意图,每个单词用一种颜色表示,01~05为不同的隐藏层,到达最后一层得到的输出为 05,也是神经网络需要判断的层。
二、准备环境和数据
环境:tensorflow框架,py312,cpu
编译:VSCode
使用CPU进行编译,就无需再设置GPU
2.1 导入数据
根据给出的数据集文件,分析如下:
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
gpu0 = gpus[0]
tf.config.experimental.set_memory_growth(gpu0,true)
tf.config.set_visible_devices([gpu0],"GPU")
print("GPU: ",gpus)
else:
print("CPU:")
# 2.1 导入数据
import numpy as np
import pandas as pd
df = pd.read_csv("D:\\jupyter notebook\\DL-100-days\\RNN\\heart.csv")
print("df: ", df)
# 2.2 检查是否有空值
df.isnull().sum()
#3.1 划分训练集与测试集
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection <