文章目录
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
本次学习引入了探索式数据分析(EDA)
,可用于分析数据表内各数据之间的关系
本次学习使用的数据集:来自澳大利亚许多地点的大约10年的每日天气观测数据。
本次学习的任务:根据提供的数据,对明天是否下雨(RainTomorrow
)进行预测。
语言环境:Python 3.12
编译器:VSCode
深度学习框架:Tensorflow 2.11.0
1. 导入模块
print("*****************# 1. 导入模块************************")
# 1. 导入模块
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.callbacks import EarlyStopping
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error, mean_squared_error
print("*****************# 1. 导入模块 End************************")
2. 导入数据
# 2. 导入数据
print("*****************# 2. 导入数据************************")
data = pd.read_csv("D:\\jupyter notebook\\DL-100-days\\RNN\\weatherAUS.csv")
df = data.copy()
print("data.head():\n", data.head())
print("data.describe():\n", data.describe())
print("data.dtypes:\n", data.dtypes)
data['Date'] = pd.to_datetime(data['Date'])
print("data['Date']:\n", data['Date'])
data['year'] = data['Date'].dt.year
data['Month'] = data['Date'].dt.month
data['day'] = data['Date'].dt.day
print("data.head():\n", data.head())
data.drop('Date', axis=1, inplace=True)
print("data.columns:\n", data.columns)
print("*****************# 2. 导入数据 End************************")
3.探索式数据分析方法(EDA)
探索性数据分析(Exploratory Data Analysis,简称EDA),是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律了解数据集,了解变量间的相互关系以及变量与预测值之间的关系的一种数据分析方法。
3.1 数据相关性探索
print("*****************3.探索式数据分析方法(EDA)************************"