jetson nano b01 开发yolov11

jetson nano b01 开发yolov11记录贴

模型 .pt转.engine

yolov11训练得到的模型是best.pt,首先将其转换为best.onnx,然后在到jeston上用trtexec指令将其转换为best.engine格式

from ultralytics import YOLO

model = YOLO(r"best.pt",task='detect')  
model.export(format='onnx',imgsz = 640)#engine

jetson trtexec 需要等待一定时间,有点长… …

trtexec --onnx=/home/jetson/yolov11/yolov8n.onnx  --saveEngine=yolov8n.engine --fp16

在这里插入图片描述

bash: trtexec: command not found

vim ~/.bashrc
export PATH=/usr/src/tensorrt/bin:$PATH
source ~/.bashrc

vnc远程修改屏幕分辨率

xrandr --fb 1920x1080

开机自启动py程序

1 创建start.sh

/home/jetson/miniforge3/envs/yolov11/bin/python /home/jetson/yolov11/detect.py

2 点击右上角搜索 Startup Applications
在这里插入图片描述
3 Add 增加新的开机自启动项

gnome-terminal -x /home/jetson/yolov11/start.sh

在这里插入图片描述

取消屏保

在这里插入图片描述

在这里插入图片描述

win11和vnc互相复制

win11复制文字到vnc是加密设置的原因。关掉就ok了

<think>好的,我需要帮助用户在NVIDIA Jetson Nano B01上部署YOLOv8模型。首先,我得确认设备的兼容性。根据用户提供的引用[1]和[2],Jetson Nano B01运行的是Ubuntu 18.04,并且支持CUDA,这对深度学习模型部署很重要。不过YOLOv8需要特定的框架支持,比如PyTorch或TensorRT,我需要检查这些框架在Jetson上的可用性。 接下来,安装依赖项是关键步骤。Jetson Nano通常使用JetPack SDK,其中包含CUDA、cuDNN和TensorRT。用户可能需要先更新系统并安装这些库。然后,安装PyTorch的ARM版本,因为标准PyTorch可能不兼容。此外,Ultralytics官方可能提供了YOLOv8的安装指南,需要参考他们的文档。 模型转换也是一个重点。YOLOv8的PyTorch模型可能需要转换为ONNX格式,然后再用TensorRT优化,以提高在Jetson上的推理速度。使用NVIDIA的TensorRT工具进行转换和优化,可以显著提升性能。 性能优化方面,需要考虑Jetson Nano的硬件限制,比如4GB内存和相对较弱的GPU。建议启用GPU加速,调整模型输入分辨率,并使用FP16精度减少计算量。此外,关闭图形界面可以释放更多资源给模型推理。 最后,测试部署后的模型,确保其正常运行,并监控资源使用情况。如果遇到性能问题,可能需要进一步优化模型或调整参数。同时,用户可能需要参考社区资源或论坛,看看其他开发者是如何在Jetson Nano上部署YOLOv8的,可能会有一些实用的技巧和经验分享。</think>### NVIDIA Jetson Nano B01 部署 YOLOv8 模型指南 #### 1. **兼容性分析** NVIDIA Jetson Nano B01 搭载 ARM Cortex-A57 CPU 和 Maxwell 架构的 128 CUDA 核心 GPU,支持 CUDA、cuDNN 和 TensorRT 加速库,理论上兼容 YOLOv8 模型[^1][^2]。需注意: - **系统依赖**:需确保系统为 Ubuntu 18.04/20.04 LTS,并已安装 JetPack SDK(包含 CUDA、TensorRT)。 - **框架适配**:YOLOv8 基于 PyTorch,需安装 ARM 架构适配的 PyTorch 版本。 #### 2. **部署步骤** **步骤 1:系统环境配置** ```bash # 更新系统 sudo apt update && sudo apt upgrade -y # 安装基础依赖 sudo apt install python3-pip libopenblas-base libopenmpi-dev -y # 安装 PyTorch(需选择 Jetson 兼容版本) pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/arm ``` **步骤 2:安装 YOLOv8** ```bash pip3 install ultralytics ``` **步骤 3:模型转换与优化** ```python from ultralytics import YOLO # 导出模型为 ONNX 格式 model = YOLO("yolov8n.pt") model.export(format="onnx", simplify=True) # 使用 TensorRT 进一步优化(需安装 trtexec 工具) # 命令示例:/usr/src/tensorrt/bin/trtexec --onnx=yolov8n.onnx --saveEngine=yolov8n.trt ``` **步骤 4:推理代码示例** ```python import cv2 from ultralytics import YOLO model = YOLO("yolov8n.trt") # 加载 TensorRT 优化后的模型 results = model.predict("input.jpg", imgsz=640, conf=0.5) results[0].save("output.jpg") ``` #### 3. **性能优化建议** - **GPU 加速**:确保 CUDA 和 cuDNN 已正确配置,可通过 `nvidia-smi` 验证 GPU 使用率。 - **模型量化**:使用 FP16 或 INT8 精度减少计算量(需 TensorRT 支持): ```python model.export(format="engine", half=True) # FP16 量化 ``` - **分辨率调整**:降低输入图像分辨率(如从 640×640 降至 320×320)。 - **资源管理**:关闭图形界面释放内存: ```bash sudo systemctl isolate multi-user.target ``` #### 4. **验证与监控** ```bash # 监控 GPU 状态 tegrastats --interval 1000 # 测试推理速度 python3 -c "from ultralytics import YOLO; YOLO('yolov8n.trt').predict('input.jpg', verbose=False)" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值