高光谱图像分类 多模态

AttributeError: module ‘tensorflow.compat.v2‘ has no attribute ‘internal

这是tensorflow和keras版本不对应问题。

pip install tensorflow==2.3.0
pip install keras==2.3.1

No module named ‘sklearn‘ 解决方案

pip install scikit-learn

[警告] FutureWarning: Passing (type, 1) or ‘1type’ as a synonym of type is deprecated; in a future ver

numpy 版本过高

pip install "numpy<1.17"

ValueError: Could not interpret optimizer identifier: <tensorflow.python.keras.optimizer_v2.nadam.Nadam object at 0x000002005A1F4F08>

在这里插入图片描述

解决方法: 将from tensorflow.keras改为 from keras

基于 Mamba 的高光谱和激光雷达数据联合分类网络(2024.9.12)

Joint Classification of Hyperspectral and LiDAR Data Based on Mamba
高光谱图像分析(数据加载及可视化)

为了评估 HLMamba 的性能,我们将其与几种最先进的分类方法进行了比较。其中包括两种基于高光谱图像(HSI)的单源分类方法,即视觉 Transformer(ViT)和光谱 Transformer(SF) ,以及七种基于 HSI 和激光雷达(LiDAR)的多源联合分类方法,分别是耦合卷积神经网络(CoupledCNN)、基于图注意力的多模态融合网络(GAMF)、多模态融合 Transformer(MFT)、分层卷积神经网络和 Transformer 网络(HCT)、全局 - 局部 Transformer 网络(GLTNet)、交叉高光谱和激光雷达注意力 Transformer(Cross - HL),以及基于多注意力的动态尺度分层融合网络(DSHFNet)。

不同方法在Ternto数据集上获得的分类准确率(%)(最佳结果以粗体显示)

DSHFNet
CoupledCNN
Cross - HL
GAMF
MFT
HCT
GLTNet

多模态 高光谱图像分类 相关论文收集

FusAtNet:基于双注意力机制的光谱空间多模态融合网络,用于高光谱和激光雷达分类(2020) code
用于高光谱和激光雷达数据分类的多模态注意感知卷积神经网络(2022) no code
一种基于图注意力机制的新型多模态融合网络,用于高光谱图像和激光雷达数据的联合分类 GAMF(2024) code
用于遥感图像分类的多模态融合变换器 MFT(2023) code
多模态信息 ViT:高光谱和激光雷达分类的信息聚合和分发 MIVit (2024) code
耦合对抗学习用于高光谱和激光雷达数据融合分类(2023) code
用于高光谱和激光雷达数据协同分类的模态融合视觉变换器 (2024) no code
MCFT:用于高光谱图像和 LiDAR 数据分类的多模对比融合变换器(2024) code
用于高光谱和激光雷达数据分类的深度编码器-解码器网络 EndNet(2020) 高引 code
S²ENet:用于高光谱和激光雷达数据分类的空间光谱跨模态增强网络(2021) code
用于高光谱和激光雷达数据分类的深度分层视觉变换器DHViT(2022)高引code
用于高光谱和激光雷达数据融合分类的多注意力分层密集融合网络(2022)code
MS2CANet:用于高光谱图像和激光雷达分类的多尺度空间光谱跨模态注意网络(2024)code
用于多模态遥感数据分类的卷积神经网络(2021)code

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值