ok了,兄弟们,我们开始!
输电线检测与跟踪论文阅读
知网论文阅读,从工程的角度,以及从写论文的角度出发。
检测或者识别方面的文章大部分是输电线异常检测、零件缺陷识别
基于一种改进的Hough变换的输电线提取与识别
2016年
这篇论文最终的效果也还不错。
文章提出了基于一种改进的Hough变换的输电线提取与识别的方法,利用搜索聚类首先将二值图像中相连的像素点提取出来,经过形态学处理后由于背景中的像素点分布是分散而不连续的,因此只有输电线的边缘会被保留下来;接着仅需要少量的计算提取出的输电线边缘像素点到参数空间的点线映射就可以运用阈值区间的自适应估算方法识别出输电线。实验结果表明,该方法能较为准确的提取出图像中的输电线,并且计算速度较传统方法有提高,在实际应用中更能满足实时性的需求,但是在对比度极低的情况下识别效果还不理想,这是今后要研究解决的问题。
基于一种改进的Hough变换的输电线路图像中导线识别研究
硕士学位论文 2016年 太老了,有点不想看了(PS:好吧,跟上一篇文章的作者是同一个人)
没什么更特别的地方。。。
基于间隔棒跟踪的输电线舞动检测
这种方法只能针对特定的视角且输电线上有间隔棒的情况,如果是没有间隔棒的输电线呢
通过跟踪间隔棒来间接实现输电线舞动的监测,通过输电线定位算法并以投影 Laws 纹理能量值作为统计特征实现间隔棒检测。
实验结果表明,本文中提出的间隔棒检测方法能够有效地检测图像中的大部分间隔棒,对于四、八分裂间隔棒的检测效果较好。二分裂间隔棒的特征较少且呈现出的像素数量非常少,加之二分裂导线的边缘梯度与天空更为接近,导致在沿输电线路搜索时受到噪声的干扰相对较大,因此,这类间隔棒的检测结果相对较差。
基于改进U-Net的轻量级输电线分割算法
咖啡不断加加加!直接看最终的效果对比:
数据集这块问题没有解决,轻量化倒是解决了,效果还不错。
有的论文没必要看,尤其是那些陈芝麻烂谷子的陈年论文,没有可参考的代码,只有文字性描述。
融合自监督和自注意力的输电线语义分割网络
2024.1.5
效果有一定的优越性,但是依旧没有解决数据集的问题,不具备普适性。
还是在Unet的基础上改的呗,最终的效果提升了但没有提升多少。
基于输电线树障定位的改进欧氏聚类分割算法研究
通过这篇文章我终于知道为什么不用无人机载着激光雷达去识别输电线了,效果差的一B,也是,相当于二维转成三维,然后噪点更多,拟合的难度更大。
一点思考
方法1:对单个点跟踪,最终拟合成一条直线
我最终要实现的是对一条输电线的跟踪,用做线路舞动监测:
这个方法整体的思路就是先对输电线上的单个点进行跟踪,最后进行拟合。
效果都不太好,不论是光流法还是特征匹配对单个点的跟踪,各有各的缺陷,不过光流法对固定不动的线的跟踪效果还可以,但是这好像没什么用。
光流法 + 单点跟踪 + 拟合的方案,更适合跟踪刚体直线(如静止背景下的刚性杆),但在导线舞动场景中,由于导线的非刚体特性、复杂背景干扰、运动多样性,其缺陷会被放大,难以满足高精度、高鲁棒性的跟踪需求。
特征匹配对单个点的跟踪,在导线这类 “低纹理、动态形变、复杂背景” 的场景中,鲁棒性甚至可能弱于光流法—— 其核心问题在于 “单个点缺乏足够独特的特征支撑匹配”,而导线的运动特性又进一步放大了这一缺陷。
静止不动的点跟踪效果可以
线路移动的话这些点就会漂移乱动,虽然整体上也是在这条输电线上
这是场景单一或者背景为天空没有杂乱的噪声的情况下,如果是恶劣天气,尤其是雨雪的话,效果可能就不好了。
方法2:对一整条线进行跟踪
我最终要得到的不一定是掩码,是一堆点也可以,我只需要差不多或者说精确性不会太离谱就好。
- 若为实验室简单场景(如纯色背景下的导线),优先用主动轮廓模型或霍夫变换,低成本易实现。
- 若为实际输电线监测(户外、多干扰、大形变),深度学习方法(如实例分割 + 跟踪)是最优解,需结合轻量化模型(如 MobileNet 系列 backbone)保证实时性。
算法对比与选择建议
算法 | 核心优势 | 局限性 | 适用场景 |
---|---|---|---|
主动轮廓模型 | 连续曲线跟踪,抗局部噪声 | 对强背景干扰敏感,收敛速度慢 | 背景简单、导线形态较稳定的场景 |
霍夫变换动态跟踪 | 实时性好,抗局部断裂 | 对非直线导线误差大 | 直线 / 缓曲线导线,背景干扰少 |
模板匹配 | 实现简单,适合固定形态 | 不适应形变,搜索范围受限 | 短距离、小幅度运动的导线 |
深度学习方法 | 鲁棒性强,适应复杂环境 | 需数据训练,计算量大 | 户外输电线舞动(复杂背景 + 大形变) |
AI生成的,仅供参考,只是想法部分;实际效果可能依托。
归根到底还是得分成两部分:识别+跟踪
关于目标跟踪和光流算法的参考如下:
【计算机视觉】目标跟踪任务概述和算法介绍
【计算机视觉】目标跟踪| 光流算法详细介绍|附代码
深度学习方法在输电线跟踪中的劣势:需要大量的数据作为支撑,这个没得,即使有的话也是小部分的(还需要自己进行大量的标注,比较繁杂,当然这部分也可以外包出去),可能与野外实际中的相机拍到的完全不一样,就会导致识别不准确,会有很大的误差;主要是输电线这个跟踪的目标太特别了,他是一个整体,但是这个整体的特征是又细又长的,输电线分割的话能否做到轻量化呢,图像分割或者目标检测都是可以的,缺点就是前面所说到的;然后才是第二步的跟踪。