jetson nano b01 yolov11测试 fp16 fp32 量化对比

速度测试

fp32 yolo11n.engine 67ms

0: 640x640 1 10, 67.1ms
Speed: 14.2ms preprocess, 67.1ms inference, 9.1ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 67.5ms
Speed: 15.1ms preprocess, 67.5ms inference, 7.5ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 65.7ms
Speed: 14.5ms preprocess, 65.7ms inference, 6.8ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 68.1ms
Speed: 15.2ms preprocess, 68.1ms inference, 7.6ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 68.3ms
Speed: 15.3ms preprocess, 68.3ms inference, 20.3ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 69.0ms
Speed: 14.4ms preprocess, 69.0ms inference, 9.6ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 66.5ms
Speed: 14.8ms preprocess, 66.5ms inference, 11.3ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 66.4ms
Speed: 14.5ms preprocess, 66.4ms inference, 12.5ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 65.7ms
Speed: 14.4ms preprocess, 65.7ms inference, 6.8ms postprocess per image at shape (1, 3, 640, 640)

fp32 change.engine 105ms

0: 640x640 1 3, 13 5s, 1 10, 104.3ms
Speed: 18.1ms preprocess, 104.3ms inference, 9.9ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 11 5s, 1 6, 1 10, 103.8ms
Speed: 16.0ms preprocess, 103.8ms inference, 6.9ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 11 5s, 1 6, 1 10, 101.7ms
Speed: 16.7ms preprocess, 101.7ms inference, 9.8ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 3, 12 5s, 1 10, 105.7ms
Speed: 16.4ms preprocess, 105.7ms inference, 24.4ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 10 5s, 1 10, 105.9ms
Speed: 14.6ms preprocess, 105.9ms inference, 11.4ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 11 5s, 1 10, 104.3ms
Speed: 16.7ms preprocess, 104.3ms inference, 8.8ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 3, 12 5s, 1 6, 1 10, 108.7ms
Speed: 15.3ms preprocess, 108.7ms inference, 6.4ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 12 5s, 1 10, 101.8ms
Speed: 23.9ms preprocess, 101.8ms inference, 11.2ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 9 5s, 1 6, 1 10, 104.1ms
Speed: 14.9ms preprocess, 104.1ms inference, 8.5ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 101.8ms
Speed: 14.7ms preprocess, 101.8ms inference, 6.9ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 103.2ms
Speed: 14.8ms preprocess, 103.2ms inference, 7.6ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 102.2ms
Speed: 16.1ms preprocess, 102.2ms inference, 16.2ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 103.1ms
Speed: 14.4ms preprocess, 103.1ms inference, 11.4ms postprocess per image at shape (1, 3, 640, 640)

fp16 yolo11n.engine 47ms 提升20ms

Speed: 14.4ms preprocess, 47.6ms inference, 7.3ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 47.9ms
Speed: 14.5ms preprocess, 47.9ms inference, 8.4ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 48.6ms
Speed: 19.9ms preprocess, 48.6ms inference, 6.2ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 47.5ms
Speed: 14.1ms preprocess, 47.5ms inference, 7.3ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 47.8ms
Speed: 14.3ms preprocess, 47.8ms inference, 10.1ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 50.0ms
Speed: 14.6ms preprocess, 50.0ms inference, 6.7ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 49.1ms
Speed: 16.4ms preprocess, 49.1ms inference, 6.9ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 47.7ms
Speed: 14.1ms preprocess, 47.7ms inference, 5.5ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 47.9ms
Speed: 15.2ms preprocess, 47.9ms inference, 12.2ms postprocess per image at shape (1, 3, 640, 640)

fp16 change.engine 78ms 提升30ms

0: 640x640 1 10, 78.9ms
Speed: 14.7ms preprocess, 78.9ms inference, 11.9ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 78.7ms
Speed: 14.5ms preprocess, 78.7ms inference, 6.8ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 79.8ms
Speed: 14.2ms preprocess, 79.8ms inference, 7.5ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 81.6ms
Speed: 16.0ms preprocess, 81.6ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 79.1ms
Speed: 17.4ms preprocess, 79.1ms inference, 7.7ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 78.9ms
Speed: 15.0ms preprocess, 78.9ms inference, 7.3ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 (no detections), 79.0ms
Speed: 14.5ms preprocess, 79.0ms inference, 4.2ms postprocess per image at shape (1, 3, 640, 640)

0: 640x640 1 10, 81.9ms
Speed: 16.0ms preprocess, 81.9ms inference, 8.5ms postprocess per image at shape (1, 3, 640, 640)

gpu占用

fp16仅仅比fp32少占用10M gpu显存,效果不明显
在这里插入图片描述
在这里插入图片描述

ELSE

jetson nano b01 环境配置

在这里插入图片描述

yolov11改进的模型最好不要有什么可变性卷积

tensorrt不支持,所以也就无法转成.engine格式
最好在jetson nano环境做onnx到engine的转换,需要tensorrt的版本一致才可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值