yolov11 jetson nano 模型测试
速度测试
fp32 yolo11n.engine 67ms
0: 640x640 1 10, 67.1ms
Speed: 14.2ms preprocess, 67.1ms inference, 9.1ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 67.5ms
Speed: 15.1ms preprocess, 67.5ms inference, 7.5ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 65.7ms
Speed: 14.5ms preprocess, 65.7ms inference, 6.8ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 68.1ms
Speed: 15.2ms preprocess, 68.1ms inference, 7.6ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 68.3ms
Speed: 15.3ms preprocess, 68.3ms inference, 20.3ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 69.0ms
Speed: 14.4ms preprocess, 69.0ms inference, 9.6ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 66.5ms
Speed: 14.8ms preprocess, 66.5ms inference, 11.3ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 66.4ms
Speed: 14.5ms preprocess, 66.4ms inference, 12.5ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 65.7ms
Speed: 14.4ms preprocess, 65.7ms inference, 6.8ms postprocess per image at shape (1, 3, 640, 640)
fp32 change.engine 105ms
0: 640x640 1 3, 13 5s, 1 10, 104.3ms
Speed: 18.1ms preprocess, 104.3ms inference, 9.9ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 11 5s, 1 6, 1 10, 103.8ms
Speed: 16.0ms preprocess, 103.8ms inference, 6.9ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 11 5s, 1 6, 1 10, 101.7ms
Speed: 16.7ms preprocess, 101.7ms inference, 9.8ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 3, 12 5s, 1 10, 105.7ms
Speed: 16.4ms preprocess, 105.7ms inference, 24.4ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 10 5s, 1 10, 105.9ms
Speed: 14.6ms preprocess, 105.9ms inference, 11.4ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 11 5s, 1 10, 104.3ms
Speed: 16.7ms preprocess, 104.3ms inference, 8.8ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 3, 12 5s, 1 6, 1 10, 108.7ms
Speed: 15.3ms preprocess, 108.7ms inference, 6.4ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 12 5s, 1 10, 101.8ms
Speed: 23.9ms preprocess, 101.8ms inference, 11.2ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 9 5s, 1 6, 1 10, 104.1ms
Speed: 14.9ms preprocess, 104.1ms inference, 8.5ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 101.8ms
Speed: 14.7ms preprocess, 101.8ms inference, 6.9ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 103.2ms
Speed: 14.8ms preprocess, 103.2ms inference, 7.6ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 102.2ms
Speed: 16.1ms preprocess, 102.2ms inference, 16.2ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 103.1ms
Speed: 14.4ms preprocess, 103.1ms inference, 11.4ms postprocess per image at shape (1, 3, 640, 640)
fp16 yolo11n.engine 47ms 提升20ms
Speed: 14.4ms preprocess, 47.6ms inference, 7.3ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 47.9ms
Speed: 14.5ms preprocess, 47.9ms inference, 8.4ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 48.6ms
Speed: 19.9ms preprocess, 48.6ms inference, 6.2ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 47.5ms
Speed: 14.1ms preprocess, 47.5ms inference, 7.3ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 47.8ms
Speed: 14.3ms preprocess, 47.8ms inference, 10.1ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 50.0ms
Speed: 14.6ms preprocess, 50.0ms inference, 6.7ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 49.1ms
Speed: 16.4ms preprocess, 49.1ms inference, 6.9ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 47.7ms
Speed: 14.1ms preprocess, 47.7ms inference, 5.5ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 47.9ms
Speed: 15.2ms preprocess, 47.9ms inference, 12.2ms postprocess per image at shape (1, 3, 640, 640)
fp16 change.engine 78ms 提升30ms
0: 640x640 1 10, 78.9ms
Speed: 14.7ms preprocess, 78.9ms inference, 11.9ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 78.7ms
Speed: 14.5ms preprocess, 78.7ms inference, 6.8ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 79.8ms
Speed: 14.2ms preprocess, 79.8ms inference, 7.5ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 81.6ms
Speed: 16.0ms preprocess, 81.6ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 79.1ms
Speed: 17.4ms preprocess, 79.1ms inference, 7.7ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 78.9ms
Speed: 15.0ms preprocess, 78.9ms inference, 7.3ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 (no detections), 79.0ms
Speed: 14.5ms preprocess, 79.0ms inference, 4.2ms postprocess per image at shape (1, 3, 640, 640)
0: 640x640 1 10, 81.9ms
Speed: 16.0ms preprocess, 81.9ms inference, 8.5ms postprocess per image at shape (1, 3, 640, 640)
gpu占用
fp16仅仅比fp32少占用10M gpu显存,效果不明显
ELSE
jetson nano b01 环境配置
yolov11改进的模型最好不要有什么可变性卷积
tensorrt不支持,所以也就无法转成.engine格式
最好在jetson nano环境做onnx到engine的转换,需要tensorrt的版本一致才可以