
人脸
文章平均质量分 93
zzl_1998
XMU
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[CVPR‘22] DTLD: Towards Accurate Facial Landmark Detection via Cascaded Transformers
DTLD整体结构为:CNN + Transformer-decoder。主要改进是针对decoder,包含四个部分:Query初始化方法,基于CNN的顶层特征接回归头,使用FC后的特征作为初始化;在Cross-attention前,增加self-attention;引入Deformable Attention,并将初始的reference point替换为CNN特征回归的粗结果;在decoder中,基于deformable attention机制,迭代更新feature map。原创 2023-03-05 13:23:35 · 846 阅读 · 0 评论 -
[CVPR‘23] Rodin: A Generative Model for Sculpting 3D Digital Avatars Using Diffusion
提出一种3D生成模型:用扩散模型自动生成3D数字虚拟人,并将其表征为neural radiance fields。该任务的主要问题在:生成高质量虚拟人,需要耗费大量时间和内存;本文提出roll-out diffusion network (Rodin),该方法将neural radiance field表征为多个2D feature maps,并将这些特征层展开为一个2D特征平面,进一步在该特征平面中执行3D-aware diffusion。原创 2023-02-15 23:05:36 · 1997 阅读 · 6 评论 -
[CVPR‘22] EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks
研究如何基于单视角2D图片,通过无监督方法,生成高质量、多视角一致的3D形状;现有3D GAN存在问题:1)计算开销大;2)不具有3D一致性(3D-consistent);本文提出:1):提速、减小计算开销;2):可以借助sota 2D GAN,例如:StyleGAN2。在FFHQ和AFHQ Cats的3D-aware synthesis任务上达到sota。原创 2023-02-14 23:09:30 · 6694 阅读 · 3 评论 -
[CVPR‘22 SLPT] Sparse Local Patch Transformer for Robust Face Alignment and Landmarks Inherent Relat
Heatmap-based方法是目前Face alignment中的主流方法,然而该类方法忽略了点位之间的内在关联;本文提出Sparse Local Patch Transformer (SLPT),用于学习点位之间的内在关联;SLPT的主要步骤:1)基于局部块生成每个点位的特征表示;2)基于注意力机制学习这些点位的内在关联;3)小数坐标是基于聚合特征(aggregated feature)独立预测的。原创 2022-11-24 13:55:18 · 1195 阅读 · 0 评论 -
[CVPR‘22 FaRL] General Facial Representation Learning in a Visual-Linguistic Manner
FaRL,首个针对人脸任务的预训练大模型;提出:1)使用contrastive loss,从image-text对中学习high-level语义特征;2)使用masked image modeling,学习low-level信息。提出LAION-FACE数据集,包含大量的image-text对;实验验证:1)FaRL相较其他预训练大模型,在人脸下游任务上有更好的迁移效果;2)在face parsing和face alignment中超过sota方法。原创 2022-11-05 22:04:39 · 1760 阅读 · 1 评论