
tensorflow
zzl_1998
XMU
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【NCC】Discovering casual signal In image代码复现发现的小trick
论文Discovering casual signal In image的实现:https://github.com/kyrs/NCC-experiments 复现(跟着关键函数敲)了一下关于NCC部分的代码,共有两个部分:NCC-dataGen.py和NCC-NN-training.py 一、dataGen 1. 高斯函数: N(mu, sigma^2) = sigma * np.random.randn() + mu 2. 使系数和为1,即将每个系数除以系数和即可 3. 归一化:sklearn原创 2020-09-27 12:24:24 · 412 阅读 · 0 评论 -
Tensorflow:BP神经网络权值初始化
一、Tensorflow入门 1、计算图: 每一个计算都是计算图上的一个结点,而节点之间的边描述了计算之间的依赖关系。 支持通过tf.Graph生成新的计算图,不同计算图上的张量和运算不会共享。 Tensorflow会自动生成一个默认的计算图,如果没有特殊指定,运算会自动加入这个计算图中。 import tensorflow as tf def BP_NeuralNetwork(): ...原创 2019-12-16 23:59:20 · 2305 阅读 · 0 评论 -
Tensorflow:数据特征值的自变量为离散值
import pandas as pd from sklearn.utils import shuffle dataSet = pd.read_csv('input/mushrooms.csv') mapPto1Eto0 = {'p':1,'e':0} dataSet['class'] = dataSet['class'].map(mapPto1Eto0).astype('int') #将p...原创 2019-12-17 00:02:10 · 464 阅读 · 0 评论