pytorch安装(2021)

本文详细记录了如何在最新Anaconda和显卡驱动下安装PyTorch,包括检查显卡、创建并切换环境、更换镜像、安装步骤及注意事项,旨在帮助读者顺利规避安装难题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch安装

安装这个东西花了我整整一天,踩了很多坑,记录一下,默认你已经安装了最新的anaconda和python,我把anaconda和显卡驱动都装成最新的了

可以使用如下命令更新
conda update python
conda update anaconda

第一:检查显卡,更新驱动

  1. 我的建议是首先更新驱动,全都按最新的东西来安装

https://www.nvidia.cn/Download/index.aspx?lang=cn#
在这里选择自己的显卡型号,下载安装即可,下载很快也很简单
建议大多数人都更新一下显卡驱动,避免不必要的麻烦
在这里插入图片描述

  1. 安装好后进入nvidia控制面板
    鼠标右键可进入
    在这里插入图片描述
    点击组件找到自己CUDA的版本号
    在这里插入图片描述
    或者cmd输入
nvidia-smi
没有这条命令的需要添加环境变量(百度就有)

也可获得版本号
在这里插入图片描述

第二:创建pytorch环境

不同的项目需要不同的环境,可以处理不同版本的项目之间不兼容问题
进入anaconda prompt
在这里插入图片描述
输入

conda create -n mypytorch python=3.8

mypytorch是名字,3.8是python版本,都可以按自己需求改
然后按y,继续安装所需的包

输入

conda info --envs

可以看见自己的所有环境
在这里插入图片描述
接下来就是在mypytorch中安装pytorch包

第三:安装pytorch

进入pytorch官网

https://pytorch.org/

选择合适的版本(如果你的CUDA还是9.2,建议你返回第一步更新驱动),复制下面的命令(不要-c python)
在这里插入图片描述

在anaconda prompt中进入mypytorch环境输入

conda activate mypytorch

进入环境
在这里插入图片描述

重点来了
1.首先更换镜像(看第四点)
2.输入 conda install pytorch torchvision torchaudio cudatoolkit=11.0 (这段命令按自己的版本来)
注意后面没有-c pytorch,有的话记得删除
3.等待安装

第四:换镜像

注意所有操作都在mypytorch环境下
在这里插入图片描述

先清除原来镜像

conda config --remove-key channels 

然后添加清华镜像
我的建议是直接改.condarc文件中的内容,我的内容如下,因为网上各路镜像都不一样,有的可以,有的不行,所以我直接全加进来了,建议你也这样
在这里插入图片描述

ssl_verify: true
show_channel_urls: true

channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/

在电脑中的.condarc文件中可以查看
在这里插入图片描述

最后就可以输入命令下载了

 conda install pytorch torchvision torchaudio cudatoolkit=11.0 (每个人的版本不一样)

下载过程相当的漫长,清华源也很慢,而且中途会http断开,包又很多个,多试几次,或者换个wifi可能会好点
在这里插入图片描述

第五:测试

### 如何在不同环境下安装PyTorch #### 创建虚拟环境 为了确保项目的独立性和稳定性,建议在安装PyTorch前先创建一个专门的虚拟环境。这可以通过Conda工具轻松实现。具体命令如下: ```bash conda create -n pytorch_env python=3.9 ``` 上述命令会创建名为`pytorch_env`的虚拟环境,并指定Python版本为3.9[^1]。 激活该虚拟环境的命令为: ```bash conda activate pytorch_env ``` 此时,您已成功切换至新创建的虚拟环境中工作[^4]。 #### 查找合适的PyTorch版本 进入PyTorch官方网站 (https://pytorch.org/get-started/previous-versions/) 可以找到适合您的CUDA版本对应的PyTorch安装指令。例如,如果您使用的CUDA版本为11.7,则可以在页面上通过快捷键Ctrl+F搜索关键字“11.7”,从而定位到相应的安装命令[^5]。 #### 安装PyTorch 假设目标是安装支持GPU加速的PyTorch-GPU版,可以运行以下命令完成安装操作: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch -c nvidia ``` 此条命令不仅包含了PyTorch核心包及其依赖项(如`torchvision`, `torchaudio`),还指定了特定版本的CUDA Toolkit作为驱动程序的一部分[^2]。 如果仅需CPU版本而无需考虑GPU兼容性的话,那么可以直接简化成这样一条语句来执行安装过程: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 这条命令适用于那些不打算利用图形处理器来进行计算的情况下的开发场景[^4]。 #### 验证安装结果 最后一步非常重要——验证刚刚所做的一切是否正常运作。启动Python解释器并尝试导入模块即可初步判断其状态良好与否: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 这段脚本能够打印当前加载的PyTorch库的具体版本号以及检测是否存在可用的CUDA设备资源情况[^3]。 ---
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值