机器学习的流程:
1.把问题变成机器学习的问题。譬如我想让机器人帮我叠衣服,这就不是一个好的机器问题。但是我想让机器帮我把法语翻译成汉语,这就是一个简单的机器问题.
2.收集数据。没有数据怎么训练模型?有了数据之后就可以开始选择一些合适的模型进行训练,调参。
3.把模型部署到线上进行实践。然后会收集到新的数据,再到步骤二,形成循环。
1.有的问题是很难的,选择问题的标准不是机器学习问题的难易,而是说哪个问题可以利益最大化。
2.数据很多,但是缺少高质量的数据。这个过程需要大量的清洗和标注。
3.模型训练出来之后并不能解决所有问题。有的时候上线对gpu要求过高。部署之后只是完成了一个轮回,后期需要不断地监控,不断的调整。
领域专家:懂商业,了解数据哪些是重要的,知道应该把机器学习部署到哪里。
数据科学家:全栈的,会把整个流程走一遍。
软件