斯坦福2021秋季·实用机器学习【中文】【合集】+1.1课程介绍

该博客介绍了机器学习的三个关键步骤:将问题转化为适合机器学习的问题,如法语翻译为汉语;收集并清洗数据,尤其强调高质量数据的重要性;将模型部署并持续监控调整。文章提到了不同角色在机器学习项目中的职责,如领域专家、数据科学家和软件开发工程师,并指出数据清洗占据了大部分时间。课程内容涵盖整个流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习的流程:

1.把问题变成机器学习的问题。譬如我想让机器人帮我叠衣服,这就不是一个好的机器问题。但是我想让机器帮我把法语翻译成汉语,这就是一个简单的机器问题.

2.收集数据。没有数据怎么训练模型?有了数据之后就可以开始选择一些合适的模型进行训练,调参。

3.把模型部署到线上进行实践。然后会收集到新的数据,再到步骤二,形成循环。

 

1.有的问题是很难的,选择问题的标准不是机器学习问题的难易,而是说哪个问题可以利益最大化。

2.数据很多,但是缺少高质量的数据。这个过程需要大量的清洗和标注。

3.模型训练出来之后并不能解决所有问题。有的时候上线对gpu要求过高。部署之后只是完成了一个轮回,后期需要不断地监控,不断的调整。

 

领域专家:懂商业,了解数据哪些是重要的,知道应该把机器学习部署到哪里。

数据科学家:全栈的,会把整个流程走一遍。

软件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值