Google机器学习实践指南(L1(稀疏特征)正则化)

🔥 Google机器学习(23)-L1(稀疏特征)正则化

Google机器学习(23)-L1(稀疏特征)正则化(约8分钟)


一、正则化核心概念

正则化类型

在这里插入图片描述

L1正则化定义

定义

L1正则化,使用一种根据权重的绝对值的总和来惩罚权重的正则化方式。在依赖稀疏特征的模型中,L1 正则化有助于使不相关或几乎不相关的特征的权重正好为 0,从而将这些特征从模型中移除。与 L2 正则化相对。

数学表达

正则化项 = λ ∑ ∣ w i ∣ 正则化项 = λ∑|wᵢ| 正则化项=λwi

特性:

  • 产生精确零权重

  • 自动执行特征选择

  • 适合高维稀疏数据

二、L1 vs L2 机制对比

权重更新差异

特性L1正则化L2正则化
惩罚项 ∑ ∣ w i ∣ \sum|w_i| wi ∑ w i 2 \sum w_i^2 wi2
导数常数 k k k 2 × 2 \times 2×权重
收敛行为可能精确到零渐进趋近零
内存效率高(稀疏矩阵)中等

公式说明

  • w i w_i wi: 第 i i i个权重参数
  • L1导数中的 k k k ± 1 \pm1 ±1(取决于权重符号)
  • L2导数中的权重为当前参数值1,5

迭代效果可视化

  • 迭代25步模型权重
    在这里插入图片描述
  • 迭代151步模型权重
    在这里插入图片描述

三、L1正则化优势场景

1. 高维特征处理

案例:文本分类中的词袋模型

原始特征:50,000维

经L1筛选后:约3,000个非零权重

2. 模型压缩

效果对比:

# L1模型大小示例
original_size = "2.3GB"
after_l1 = "350MB"  # 减少85%存储需求

3. 特征重要性分析

输出示例:

特征重要性排名:
1. 用户活跃度 (权重: 0.87)
2. 最近购买 (权重: 0.63)
3. 地理位置 (权重: 0.0)  # 被L1剔除

四、最佳实践

✅ 适用场景:

  • 特征维度 > 10,000

  • 需要模型解释性

  • 严格的内存限制

⚠️ 注意事项:

  • 需先做特征标准化

  • 小心重要特征被误剔除

  • 配合交叉验证选择λ


# 技术问答 #

Q:L1为什么能精确产生零权重?

A:由于L1在零点不可导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值