蜘蛛猴优化算法python代码

本文介绍了使用Python编程语言实现蜘蛛猴优化算法的详细过程,包括算法的基本原理、步骤及代码实现,适合对优化算法和Python编程感兴趣的读者学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import random
import numpy as np
import matplotlib.pyplot as plt

# 定义目标函数
def objective_function(x):
    return x ** 2 - 10 * np.cos(2 * np.pi * x)

# 定义适应度函数
def fitness_function(x):
    return 1.0 / (1.0 + objective_function(x))

# 初始化种群
def initialize_population(pop_size, min_range, max_range):
    population = []
    for i in range(pop_size):
        x = random.uniform(min_range, max_range)
        population.append(x)
    return population

# 计算猴子的运动距离
def calculate_distance(position, fitness, global_best_position, global_best_fitness):
    r1 = random.uniform(0, 1)
    r2 = random.uniform(0, 1)
    a = 2 * r1 - 1
    c = 2 * r2
    distance = c * 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习的奋斗者

你的鼓励是我努力的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值