这个工作来自:Do transformers really perform badly for graph representation,Nips2021,名为Graphormer。Graphormer包含3个主要embedding:centrality encoding, spatial encoding,edge encoding。
centrality encoding
Graphormer认为节点的向心性(centrality)是图学习的重要信号,因此需要设计一个方法表示向心性并结合到Transformer中。使用图的出度和入度表示节点的向心性:hi(0)=xi+zdeg−(vi)−+zdeg+(vi)+h_{i}^{(0)}=x_{i}+z^{-}_{deg^{-}(v_{i})}+z^{+}_{deg^{+}(v_{i})}hi(0)=xi+zdeg−(vi)−+zdeg+(vi)+其中,z−,z+∈Rdz^{-},z^{+}\in\mathbb{R}^{d}z−,z+∈Rd为入度deg−(vi)deg^{-}(v_{i})deg−(vi)和出度deg+(vi)deg^{+}(v_{i})deg+(vi)的可学习embedding。对于无向图,deg−(vi)deg^{-}(v_{i})deg−(