Graph上的Transformer:Graphormer

Graphormer在NIPS2021提出,改进Transformer处理图结构的能力,通过centralityencoding、spatialencoding(使用shortestpathdistance)和edgeencoding,增强模型对图中节点间关系的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个工作来自:Do transformers really perform badly for graph representation,Nips2021,名为Graphormer。Graphormer包含3个主要embedding:centrality encoding, spatial encoding,edge encoding。
fig1

centrality encoding
Graphormer认为节点的向心性(centrality)是图学习的重要信号,因此需要设计一个方法表示向心性并结合到Transformer中。使用图的出度和入度表示节点的向心性:hi(0)=xi+zdeg−(vi)−+zdeg+(vi)+h_{i}^{(0)}=x_{i}+z^{-}_{deg^{-}(v_{i})}+z^{+}_{deg^{+}(v_{i})}hi(0)=xi+zdeg(vi)+zdeg+(vi)+其中,z−,z+∈Rdz^{-},z^{+}\in\mathbb{R}^{d}z,z+Rd为入度deg−(vi)deg^{-}(v_{i})deg(vi)和出度deg+(vi)deg^{+}(v_{i})deg+(vi)的可学习embedding。对于无向图,deg−(vi)deg^{-}(v_{i})deg(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值