【小土堆】Pytorch学习笔记_P18/19/20/21/22_神经网络专题

这篇博客详细介绍了PyTorch中的神经网络组件,包括卷积层的实现和nn.Conv2d()的参数,最大池化的应用,非线性激活函数ReLU和sigmoid,线性层(全连接层)的介绍,以及Sequential的使用,通过实例展示了如何搭建简单的神经网络模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(0)摘要

# 课程链接

PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】_哔哩哔哩_bilibili

# 笔记内容

(1)P18_神经网络-卷积层

(2)P19_神经网络-最大池化的使用

(3)P20_神经网络-非线性激活

(4)P21_神经网络-线性层及其他层的介绍

(5)P21_神经网络-搭建小实战和Sequential的使用


(1) 神经网络-卷积层

# (1)卷积层的代码实现

                1)直接给实例吧

import torch
import torchvision
import torch.nn as nn

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值