Cause: java.sql.BatchUpdateException: LZ4 is not supported. Please disable compression(compress=0)

springboot兼容clickhouse数据库多数据源配置(基于mybatis-plus)

  • clickhouse的mergeTree引擎默认支持lz4压缩,当使用clickhouse版本支持lz4压缩时需要引入,否则使用到clickhouse数据源时报以下错误

加入依赖

        <dependency>
            <groupId>org.lz4</groupId>
            <artifactId>lz4-java</artifactId>
            <version>1.8.0</version>
        </dependency>

解决

<think>我们正在解决Java中批量插入数据时出现的数据溢出异常(BatchUpdateException)。根据引用[1]中提供的JDBC批量更新示例,我们可以了解到批量操作的基本流程。但是,当数据量过大时,可能会超出数据库或JDBC驱动的限制,导致BatchUpdateException。引用[2]提到了一种可能的解决方法(增大游标的数量),但指出这种方法治标不治本,并建议根除代码上的缺陷。针对数据溢出异常,我们可以从以下几个方面考虑:1.分批处理:将大批量数据分成多个小批次,每次执行一小批,避免单次批量操作数据量过大。2.调整JDBC驱动参数:有些数据库的JDBC驱动允许设置批量操作的最大大小(如maxAllowedPacket等),可以尝试调整。3.检查数据库配置:例如,MySQL的max_allowed_packet参数,如果插入的数据行大小超过这个值,也会导致异常。4.事务管理:确保在批量操作中合理管理事务,避免事务过大(如每批提交一次事务)。下面我们将重点介绍分批处理的解决方案,因为这是最常用且可控的方法。步骤:1.确定每批处理的大小(batchSize)。这个值需要根据数据库和驱动的限制以及实际数据大小来确定,通常可以设置为1000、500或更小。2.将数据分成多个批次。3.对每个批次执行批量操作,并在每个批次后提交事务(或者根据需求调整提交频率)。示例代码:假设我们有一个数据列表`dataList`,每个元素是一个对象,包含需要插入的字段。我们使用PreparedStatement进行批量插入。 ```javaString sql= "INSERT INTOtable_name(column1,column2) VALUES(?,?)"; intbatchSize=500;//每批插入500条try (Connection conn= DriverManager.getConnection(url, username, password);PreparedStatementpstmt= conn.prepareStatement(sql)){conn.setAutoCommit(false);//关闭自动提交for(inti =0; i< dataList.size(); i++) {//设置参数pstmt.setString(1,dataList.get(i).getValue1());pstmt.setString(2, dataList.get(i).getValue2());pstmt.addBatch();//添加到批处理//当达到批次大小或者到达最后一个元素时,执行批处理if(i %batchSize==0 ||i ==dataList.size()-1){try {pstmt.executeBatch();//执行批量插入conn.commit();//提交事务} catch(BatchUpdateExceptione){//处理异常,可以选择回滚conn.rollback();//根据异常信息处理,例如记录日志,或者将这一批数据再分小批次重试等handleException(e);}}}} catch(SQLException ex) {ex.printStackTrace();} ```注意: -在循环中,每添加batchSize条记录就执行一次批处理,并在执行后立即提交事务。 -最后一批数据可能不足batchSize,所以在循环结束条件中也要执行。-捕获BatchUpdateException后,我们可以回滚当前批次的事务,然后根据具体情况处理(例如将这一批数据再拆分,或者记录失败的数据等)。另外,如果调整数据库配置(如MySQL的max_allowed_packet),可以通过以下命令查看和修改:```sqlSHOWVARIABLES LIKE'max_allowed_packet'; SETGLOBALmax_allowed_packet =1024*1024*32; --设置为32MB```但请注意,修改数据库配置需要权限,并且可能会影响其他操作,所以通常建议使用分批处理。如果问题仍然存在,可能需要检查单条数据是否过大(超过了max_allowed_packet),此时即使一条数据也会出错,那么就需要增大max_allowed_packet或者压缩数据。总结:分批处理是解决批量插入数据溢出的有效方法,同时需要合理设置批次大小,并注意事务的提交频率。 §§相关问题§§1.如何确定合适的批量插入批次大小? 2.除了分批处理,还有哪些方法可以避免BatchUpdateException? 3.在批量插入时,如何优化性能?</think>### Java 批量插入数据溢出异常解决方案 当进行批量插入操作时出现 `BatchUpdateException` 异常,通常是由于单次批量操作的数据量超过了数据库或JDBC驱动的限制。以下是系统性的解决方法: #### 1. **分批处理(推荐方案)** 将大数据集分割成小批次执行,避免单次操作数据量过大: ```java int batchSize = 500; // 每批500条数据 for (int i = 0; i < totalData.size(); i += batchSize) { int endIndex = Math.min(i + batchSize, totalData.size()); List<Data> batch = totalData.subList(i, endIndex); try (PreparedStatement pstmt = conn.prepareStatement(INSERT_SQL)) { conn.setAutoCommit(false); for (Data data : batch) { pstmt.setString(1, data.getValue1()); pstmt.setInt(2, data.getValue2()); pstmt.addBatch(); } pstmt.executeBatch(); // 执行当前批次 conn.commit(); // 提交当前批次事务 } catch (SQLException ex) { conn.rollback(); ex.printStackTrace(); } } ``` **优点**:有效避免数据溢出,内存占用可控[^1]。 #### 2. **调整数据库配置** 检查并修改数据库相关参数: - **MySQL**:增大 `max_allowed_packet` ```sql SET GLOBAL max_allowed_packet=1024*1024*64; -- 64MB ``` - **Oracle**:调整 `open_cursors` 参数 ```sql ALTER SYSTEM SET open_cursors=2000 SCOPE=BOTH; ``` **注意**:需数据库管理员权限,且影响全局性能[^2]。 #### 3. **优化JDBC参数** 在连接字符串中添加优化参数: ```java // MySQL 示例 String url = "jdbc:mysql://host/db?rewriteBatchedStatements=true&useServerPrepStmts=false"; ``` - `rewriteBatchedStatements=true`:启用批量语句重写 - `useServerPrepStmts=false`:禁用服务器端预处理 #### 4. **事务管理优化** - 每批操作后显式提交事务 - 避免长时间持有未提交事务 - 使用 `try-with-resources` 确保资源释放 #### 5. **异常处理增强** 捕获异常时获取详细错误信息: ```java catch (BatchUpdateException e) { int[] updateCounts = e.getUpdateCounts(); for (int j = 0; j < updateCounts.length; j++) { if (updateCounts[j] == Statement.EXECUTE_FAILED) { System.err.println("第 " + j + " 条数据插入失败"); } } } ``` **根本原因分析**: - 单批次数据量超过数据库包大小限制 - 预处理语句缓存区溢出 - 数据库游标数量不足 - 事务日志空间不足 > **最佳实践建议**: > 1. 始终采用分批处理策略 > 2. 批次大小控制在 500-2000 条之间 > 3. 生产环境监控数据库的 `max_allowed_packet` 和 `open_cursors` > 4. 使用连接池时配置合理的等待超时时间
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值