图卷积(1)——从欧式空间到非欧式空间

图卷积(1)——从欧式空间到非欧式空间

普通卷积神经网络

  1. 多维欧式空间
  2. 局部空间响应
  3. 卷积参数共享

活性卷积

一般卷积神经网络处理的数据都是规则排序,输入维度固定的,比如语音序列、图像像素或者视频帧,每一次卷积都是对每个处在规则空间内的数据进行聚合,并且聚合时的参数(卷积核)是一样的。当处于欧式空间内的数据发生了一些偏移,则可以采用活性卷积。


双线性插值法

采用双线性插值法,在离散坐标下,通过插值方法计算得到连续位置的像素值。 α \alpha α β \beta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值