sklearn之load_iris数据集

本文通过使用sklearn库中的KMeans算法对鸢尾花数据集进行聚类分析,首先利用MinMaxScaler对数据进行预处理,然后采用KMeans算法进行训练并预测,最后输出了对未知样本的聚类结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from sklearn.datasets import load_iris
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import KMeans
iris = load_iris()
iris_data = iris['data']
iris_target = iris['target']
iris_names = iris['feature_names']
scale = MinMaxScaler().fit(iris_data)#训练模型
iris_dataScale = scale.transform(iris_data)
kmeans = KMeans(n_clusters=3,random_state=123).fit(iris_dataScale)
print(kmeans)
result = kmeans.predict([[1.5,1.5,1.5,1.5]])
print(result[0])


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值