视觉SLAM十四讲学习5 位姿估计(4)PNP方法,DLT,P3P

视觉SLAM十四讲学习5 位姿估计(4)PNP方法,DLT,P3P,BA

前言

上篇记录了本质矩阵,基础矩阵,单应矩阵的求解。

本篇学习3D-2D点的匹配方法PnP(Perspective-n-Point),DLT,P3P。

PnP

已知某相邻帧之间匹配点的2D和3D坐标(世界坐标),求当前的位姿,称为PnP。

在这里,已知匹配点的3D坐标往往是上一帧的点坐标,2D坐标是当前帧与上一帧匹配到的点坐标。

DLT

直接线性变换(DLT)是直接通过相机运动模型求解。假设P是3D点,P’是2D点对应在归一化坐标平面的3D点
P ′ = K − 1 p s P ′ = [ R , t ] P s [ u v 1 ] = [ t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 ] [ X Y Z 1 ] s = t 9 X + t 10 Y + t 11 Z + t 12 u = t 1 X + t 2 Y + t 3 Z + t 4 t 9 X + t 10 Y + t 11 Z + t 12 v = t 5 X + t 6 Y + t 7 Z + t 8 t 9 X + t 10 Y + t 11 Z + t 12 t 1 X + t 2 Y + t 3 Z + t 4 − u ( t 9 X + t 10 Y + t 11 Z + t 12 ) = 0 t 5 X + t 6 Y + t 7 Z + t 8 − v ( t 9 X + t 10 Y + t 11 Z + t 12 ) = 0 P' = K^{-1}p \\ sP'=[R,t]P \\ \quad \\ s\begin{bmatrix} u \\ v \\ 1 \\ \end{bmatrix} = \begin{bmatrix} t_1 & t_2 & t_3 & t_4 \\ t_5 & t_6 & t_7 & t_8 \\ t_9 & t_{10} & t_{11} & t_{12} \\ \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \\ \end{bmatrix} \\ s = t_9X + t_{10}Y + t_{11}Z + t_{12} \\ \quad \\ u = \frac {t_1X+t_2Y+t_3Z+t_4}{t_9X+t_{10}Y+t_{11}Z+t_{12}} \\ \quad \\ v = \frac {t_5X+t_6Y+t_7Z+t_8}{t_9X+t_{10}Y+t_{11}Z+t_{12}} \\ \quad \\ t_1X+t_2Y+t_3Z+t_4 - u(t_9X+t_{10}Y+t_{11}Z+t_{12}) = 0 \\ t_5X+t_6Y+t_7Z+t_8 - v(t_9X+t_{10}Y+t_{11}Z+t_{12}) = 0 \\ P=K1psP=[R,t]Psuv1=t1t5t9t2t6t10t3t7t11t4t8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值