R语言第七讲 线性回归分析案例续

 

题目
          MASS 库中包含 Boston (波士顿房价)数据集,它记录了波士顿周围 506 个街区的 medv (房价中位数)。我们将设法用 13 个预测变量如 rm (每栋住宅的平均房间数), age (平均房 龄), lstat (社会经济地位低的家庭所占比例)等来预测 medv (房价中位数)。

************************************************MASS是R语言自带的库********************************************************

       上一篇文章介绍了简单线性回归的分析案例,接下来介绍一下多元线性回归的分析案例。数据集,还是继续使用上一节的Boston数据集,读者自行加载数据集,在此不做赘述。

       为了用最小二乘法拟合多元线性回归模型,再次调用 lm ()函数。语句 lm (y ~ x1 + x2 + x3) 用于建立有三个预测变量 xl , x2 和 x3 的拟合模型。 summary ( )函数输出所有预测变 量的回归系数。

> lm.fit=lm(medv~lstat+age,data=Boston)
> summary(lm.fit)
Call:
lm(formula = medv ~ lstat + age, data = Boston)

Residuals:  
    Min      1Q  Median      3Q     Max 
-15.981  -3.978  -1.283   1.968  23.158 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 33.22276    0.73085  45.458  < 2e-16 ***
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值