题目
MASS 库中包含 Boston (波士顿房价)数据集,它记录了波士顿周围 506 个街区的 medv (房价中位数)。我们将设法用 13 个预测变量如 rm (每栋住宅的平均房间数), age (平均房 龄), lstat (社会经济地位低的家庭所占比例)等来预测 medv (房价中位数)。
************************************************MASS是R语言自带的库********************************************************
上一篇文章介绍了简单线性回归的分析案例,接下来介绍一下多元线性回归的分析案例。数据集,还是继续使用上一节的Boston数据集,读者自行加载数据集,在此不做赘述。
为了用最小二乘法拟合多元线性回归模型,再次调用 lm ()函数。语句 lm (y ~ x1 + x2 + x3) 用于建立有三个预测变量 xl , x2 和 x3 的拟合模型。 summary ( )函数输出所有预测变 量的回归系数。
> lm.fit=lm(medv~lstat+age,data=Boston)
> summary(lm.fit)
Call:
lm(formula = medv ~ lstat + age, data = Boston)
Residuals:
Min 1Q Median 3Q Max
-15.981 -3.978 -1.283 1.968 23.158
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.22276 0.73085 45.458 < 2e-16 ***