Pytorch教程02 -Tensor张量和numpy array的转换,GPU上执行tensor

Pytorch教程02 -Tensor张量和numpy array的转换

pytorch一站式学习->: pytorch一站式学习,张量基本操作,神经网络基本概念与搭建集合


python一站式学习->: python一站式学习,python基础,数据类型,numpy,pandas,机器学习,NLP自然语言处理,deepseek大预言模型,Tensorflow,CV视觉


Tensor转换numpy array

Tensor和numpy array内存引用,因此改变一个值,另外一个也会改变。

import torch

x= torch.tensor([6])

# Tensor转换ndarray
y = x.numpy()
print(y)
# 结果: [6]

# Tensor和numpy array内存引用,改变一个的值,另外一个也会改变。
x.add_(2)
print(x)
#结果:tensor([8])
print(y)
# 结果: [8]

numpy array转换Tensor

Tensor和numpy array内存引用,因此改变一个值,另外一个也会改变。

import torch
import numpy as np

a = np.array([1,2,3,4,5])
b = torch.from_numpy(a)

np.add(a,1,out=a)
print(a)
# 结果:[2 3 4 5 6]
print(b)
# 结果 tensor([2, 3, 4, 5, 6], dtype=torch.int32)

GPU上执行tensor

import torch

def torch_demo1():
    # 判断机器是否安装了GPU和CUDA
    if torch.cuda.is_available():
        # 定义设备,将设备指定成GPU
        device = torch.device("cuda")
        # 直接在GPU上创建张量y,在cpu上创建张量x
        x = torch.randn(1)
        y = torch.ones_like(x,device=device)
        # 将x转移到gpu上,x和y都在gpu上,两者才能进行运算
        x = x.to(device)
        # z此时在gpu上,打印
        z = x+y
        print(z)
        #转移z到cpu上,打印
        print(z.to("cpu"),torch.double)

if __name__ == '__main__':
    torch_demo1()
#结果:tensor([1.7596], device='cuda:0') (device=cuda表示在gpu上)
     #tensor([1.7596]) torch.float64
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值