Pytorch教程02 -Tensor张量和numpy array的转换
pytorch一站式学习->: pytorch一站式学习,张量基本操作,神经网络基本概念与搭建集合
python一站式学习->: python一站式学习,python基础,数据类型,numpy,pandas,机器学习,NLP自然语言处理,deepseek大预言模型,Tensorflow,CV视觉
Tensor转换numpy array
Tensor和numpy array内存引用,因此改变一个值,另外一个也会改变。
import torch
x= torch.tensor([6])
# Tensor转换ndarray
y = x.numpy()
print(y)
# 结果: [6]
# Tensor和numpy array内存引用,改变一个的值,另外一个也会改变。
x.add_(2)
print(x)
#结果:tensor([8])
print(y)
# 结果: [8]
numpy array转换Tensor
Tensor和numpy array内存引用,因此改变一个值,另外一个也会改变。
import torch
import numpy as np
a = np.array([1,2,3,4,5])
b = torch.from_numpy(a)
np.add(a,1,out=a)
print(a)
# 结果:[2 3 4 5 6]
print(b)
# 结果 tensor([2, 3, 4, 5, 6], dtype=torch.int32)
GPU上执行tensor
import torch
def torch_demo1():
# 判断机器是否安装了GPU和CUDA
if torch.cuda.is_available():
# 定义设备,将设备指定成GPU
device = torch.device("cuda")
# 直接在GPU上创建张量y,在cpu上创建张量x
x = torch.randn(1)
y = torch.ones_like(x,device=device)
# 将x转移到gpu上,x和y都在gpu上,两者才能进行运算
x = x.to(device)
# z此时在gpu上,打印
z = x+y
print(z)
#转移z到cpu上,打印
print(z.to("cpu"),torch.double)
if __name__ == '__main__':
torch_demo1()
#结果:tensor([1.7596], device='cuda:0') (device=cuda表示在gpu上)
#tensor([1.7596]) torch.float64