LSTM-Transformer时间序列预测(单输入单预测)——基于Pytorch框架

1 介绍

在本篇文章中,将介绍如何使用Transformer和LSTM模型进行时间序列预测。这两种模型分别擅长处理序列数据和捕捉时间序列中的长短期依赖关系。我们将结合这两种模型的优势,构建一个强大的预测模型。单输入单输出预测,适合风电预测,功率预测,负荷预测等等。

2 方法

Transformer模型最初用于自然语言处理任务,但其强大的序列建模能力也适用于时间序列预测。在我们的模型中,我们使用了Transformer编码器来提取输入序列中的特征。Transformer的核心优势在于其自注意力机制,能够捕捉序列中不同位置之间的依赖关系。

由于Transformer本身不具备处理序列位置信息的能力,我们使用了位置编码来为每个输入数据点添加位置信息。这一过程涉及到对每个位置应用正弦和余弦函数,从而使模型能够区分序列中的不同位置。

长短期记忆(LSTM)网络是一种特殊类型的循环神经网络,能够有效地学习时间序列中的长期依赖关系。在我们的模型中,LSTM解码器负责根据Transformer编码器提取的特征进行预测。LSTM能够处理输入序列中的短期依赖,并通过注意力机制进一步增强对重要信息的关注。
3 结果

模型训练过程包括前向传播和反向传播。首先,输入序列通过Transformer编码器提取特征,然后传递给LSTM解码器进行预测。在训练过程中,我们使用均方误差(MSE)作为损失

### 使用LSTMTransformer进行股票价格预测 #### LSTM模型用于股票价格预测 长期短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),能够学习长时间依赖关系,在时间序列分析方面表现出色[^1]。 对于股票价格预测,数据预处理至关重要。通常会采用标准化或归一化方法来缩放特征值范围。接着,构建输入窗口(windowing)以创建训练样本集。每个样本由固定长度的历史价格组成,并对应一个未来的价格作为标签。 下面是一个简LSTM实现示例: ```python import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM, Dropout def build_lstm_model(input_shape): model = Sequential() # 添加LSTM层 model.add(LSTM(units=50, return_sequences=True, input_shape=input_shape)) model.add(Dropout(0.2)) model.add(LSTM(units=50, return_sequences=False)) model.add(Dropout(0.2)) # 输出层 model.add(Dense(units=1)) # 编译模型 model.compile(optimizer='adam', loss='mean_squared_error') return model ``` #### Transformer模型用于股票价格预测 Transformers通过自注意力机制(self-attention mechanism)捕捉全局上下文信息,这使得它们非常适合处理具有复杂模式的时间序列数据。与传统的RNN/LSTM不同的是,transformer可以并行计算整个序列中的所有位置之间的相互作用。 以下是基于PyTorch框架的一个简化版Transformer编码器结构: ```python import torch.nn as nn import math class PositionalEncoding(nn.Module): def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000): super().__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) pe = torch.zeros(max_len, 1, d_model) pe[:, 0, 0::2] = torch.sin(position * div_term) pe[:, 0, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe) def forward(self, x): """ Args: x: Tensor, shape [seq_len, batch_size, embedding_dim] """ x = x + self.pe[:x.size(0)] return self.dropout(x) class TransformerModel(nn.Module): def __init__(self, feature_size=7, num_layers=3, dropout=0.1): super(TransformerModel, self).__init__() self.model_type = 'Transformer' self.src_mask = None self.pos_encoder = PositionalEncoding(feature_size) encoder_layers = nn.TransformerEncoderLayer(d_model=feature_size, nhead=8, dropout=dropout) self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=num_layers) self.decoder = nn.Linear(feature_size, 1) self.init_weights() def init_weights(self): initrange = 0.1 self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, src): output = self.pos_encoder(src) output = self.transformer_encoder(output, self.src_mask) output = self.decoder(output[-1]) return output ``` 上述代码展示了两种不同的深度学习架构——LSTMTransformer 的基本应用方式于股票市场预测任务上。值得注意的是实际部署前还需要考虑更多因素如超参数调优、正则化技术以及评估指标的选择等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值