Python图像处理——基于ResNet152的人脸识别签到系统(Pytorch框架)

(1)数据集制作

本次使用明星做为数据集,首先编写爬虫函数,根据关键字爬取对应的明星,爬取结果保存至data文件夹,并以标签名作为文件名。具体爬取的明星如下:

图片

图片

图片

注:实际应用中,我们只需要在data文件夹下加入新的人脸类别即可。

(2)功能描述

📚 数据预处理

图像数据经过了尺寸调整数据增强,还使

可部署到云主机(Heroku,AWS……)! 使用dlib最先进的面部识别功能构建而成,具有深度学习功能。该模型在Wild标记的Labeled Faces中具有99.38%的准确度 。 这提供了一个简单的命令行工具,允许从命令行对图像文件夹进行面部识别! 1、找到图片中出现的所有面孔 2、获取每个人的眼睛,鼻子,嘴巴和下巴的位置和轮廓。 3、应用数字化妆 4、识别每张照片中出现的人物。 5、可以将此库与其他Python库一起使用来进行实时人脸识别。 使用要求 Python 3.3+或Python 2.7 macOS或Linux(Windows未正式支持,但可能有效) 人脸检测 在照片中找到面孔 在照片中找到面孔(使用深度学习) 使用GPU(使用深度学习)批量查找图像中的面孔 使用网络摄像头模糊实时视频中的所有人脸(需要安装OpenCV) 面部特征 识别照片中的特定面部特征 应用(可怕的丑陋)数字化妆 面部识别 根据已知人物的照片查找并识别照片中的未知面部 识别并在照片中的每个人周围绘制框 通过数字面部距离比较面部而不仅仅是真/假匹配 使用网络摄像头识别实时视频中的人脸 - 简单/慢速版本(需要安装OpenCV) 使用网络摄像头识别实时视频中的人脸 - 更快的版本(需要安装OpenCV) 识别视频文件中的面部并写出新的视频文件(需要安装OpenCV) 用相机识别Raspberry Pi上的脸部 运行Web服务以通过HTTP识别面部(需要安装Flask) 使用K近邻分类器识别面部
基于PyTorch框架下的ResNet实现人脸识别通常涉及到深度学习中的卷积神经网络(Convolutional Neural Networks,CNN)。ResNet,全称残差网络(Residual Network),是由Microsoft Research团队在2015年提出的,它解决了深层网络训练过程中梯度消失的问题,显著提高了模型的性能。 以下是使用PyTorch实现ResNet进行人脸识别的基本步骤: 1. **导入库**:首先需要安装PyTorch和相关的图像处理库,如`torch`, `torchvision`。 ```python import torch import torchvision.models as models from torchvision import transforms from PIL import Image ``` 2. **加载预训练模型**:从`torchvision.models.resnet`模块选择适当的ResNet模型,比如ResNet18、ResNet50等,它们已经预先训练在ImageNet数据集上,可以作为特征提取器。 ```python model = models.resnet50(pretrained=True) ``` 3. **冻结权重**:如果你只需要提取特征而不进行微调,可以将所有模型层设置为不可训练状态。 ```python for param in model.parameters(): param.requires_grad = False ``` 4. **人脸检测和裁剪**:使用人脸检测算法(如MTCNN、Dlib的face_recognition frontal_face_detector等)获取图片中的人脸区域。 5. **数据预处理**:对人脸图像进行归一化、缩放,并转化为Tensor输入模型。 ```python transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) image = Image.open('path_to_image') input_tensor = transform(image) input_batch = input_tensor.unsqueeze(0) # 添加batch维度 ``` 6. **前向传播**:通过模型进行预测,提取特征向量。 ```python features = model(input_batch) ``` 7. **存储或匹配特征**:对于识别任务,你可以选择将特征向量保存到数据库或计算与已知人脸特征的相似度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值