1. 项目介绍
实现了一款基于 YOLOv12-Paddleocr的车牌实时检测系统,结合 PyQt5 图形界面,实现图片、视频及摄像头检测功能,并提供检测结果的实时反馈。
核心功能如下:
图片检测:上传本地图片,进行检测,并展示检测前后的对比结果。
视频检测:支持上传视频文件,对视频逐帧进行检测,并可视化结果。
摄像头检测:可实时调用摄像头进行检测。
输出四个关键指标:
检测结果:车牌的具体内容。
车牌信息:车牌的归属地。
FPS(每秒帧率):衡量检测的实时性能,FPS 越高,处理速度越快。
IOU:置信度
2. 实验过程
(1)数据集介绍
使用的数据集是CPDD2020。训练集5769张,验证集1001张,测试集5006张。类别一类LicensePlate。数据集格式为yolo格式的txt文件。数据集中图片的命名规则如下:
(2)训练结果
3.视频演示及下载地址
Python图像处理——基于YOLOv12-Paddleocr的车牌实时检测系统(Pyqt5界面)
最后:
小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!