【YOLOv11改进- 注意力机制】YOLOv11+PKINet中注意力机制(2024): 最新遥感场景下注意力机制,助力YOLOv11有效涨点;

  YOLOV11目标检测改进实例与创新改进专栏 

专栏地址:YOLOv11目标检测改进专栏,包括backbone、neck、loss、分配策略、组合改进、原创改进等;

本文介绍

本文给大家带来的改进内容是在YOLOv11中添加PKINet中的CAA注意力机制,助力YOLOv11有效涨点,尤其是在遥感领域以及无人机目标检测领域内。作者提出了PKINet采用多尺度卷积核(无需空洞)来提取不同尺度的目标特征并捕捉局部上下文信息。此外,还并行引入了上下文锚点注意力(CAA)模块,以捕捉长距离的上下文信息。

目录

  YOLOV11目标检测改进实例与创新改进专栏 

本文介绍

1.CAA模块介绍

论文地址:

文章摘要

2. CAA网络结构图

1. 局部区域特征的提取

2. 深度可分离的带状卷积

3. 动态调整卷积核大小

4. 轻量化设计

3. yolov11-CAA yaml文件

<think>嗯,用户想在YOLOv11中添加CBAM注意力机制。首先,我需要回忆一下CBAM的结构。CBAM通常由通道注意力和空间注意力两部分组成,串联在卷积块后面。根据之前的引用,YOLOv8和YOLOv5都有类似的集成方法,可能YOLOv11的结构也类似。 首先,用户需要确认YOLOv11的代码结构。比如,模块定义的位置,可能在nn/modules目录下。然后,创建CBAM模块的代码文件,比如CBAM.py,里面实现通道和空间注意力。通道部分包括平均池化和最大池化,接一个MLP;空间部分则是两个卷积层。这部分可以借鉴引用2和4中的代码结构。 接下来,需要将CBAM导入到tasks.py中,并在对应的模型配置里添加CBAM模块。用户需要修改模型的yaml配置文件,在适当的位置插入CBAM,比如在Backbone的某个卷积层后。同时,要注意修改__init__.py,将CBAM加入__all__列表,确保能被正确调用。 然后,检查输入输出通道数是否匹配。例如,在卷积层后添加CBAM,需要确保输入通道和输出通道一致,避免维度不匹配的问题。可能需要调整参数,如引用4中提到的处理方式,确保通道数被正确整除。 最后,训练时调整超参数,比如学习率,因为添加新模块可能影响训练稳定性。用户需要在自己的数据集上测试,观察是否,根据引用1和2的经验,可能会有3%左右的提升。 用户可能遇到的问题包括模块导入错误、维度不匹配、训练不收敛等。需要提醒用户检查代码是否正确导入,通道设置是否正确,以及适当调整训练参数。此外,建议用户参考已有的YOLO版本集成CBAM的方法,因为不同版本结构可能相似,可以借鉴。</think>### 在YOLOv11中添加CBAM注意力机制的实现方法 #### 一、实现步骤 1. **模块定义** 在`models/common.py`或新建的`modules.py`中添加CBAM模块代码: ```python import torch import torch.nn as nn class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc = nn.Sequential( nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False), nn.ReLU(), nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) ) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc(self.avg_pool(x)) max_out = self.fc(self.max_pool(x)) return self.sigmoid(avg_out + max_out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super().__init__() self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv(x) return self.sigmoid(x) class CBAM(nn.Module): def __init__(self, c1, reduction=16, kernel_size=7): super().__init__() self.ca = ChannelAttention(c1, reduction) self.sa = SpatialAttention(kernel_size) def forward(self, x): x = x * self.ca(x) x = x * self.sa(x) return x ``` (实现逻辑参考自YOLOv5的CBAM集成方法[^4]) 2. **模块注册** 在`models/__init__.py`中添加: ```python from .common import CBAM # 根据实际路径调整 __all__ = [..., 'CBAM'] ``` 3. **模型配置修改** 在模型配置文件(如`yolov11.yaml`)的Backbone或Neck部分插入CBAM: ```yaml backbone: # 原始层配置 - [1, Conv, [64, 6, 2, 2]] # 0-P1/2 # 插入CBAM - [CBAM, [64]] # 新增层 - [1, Conv, [128, 3, 2]] # 1-P2/4 ``` #### 二、关键注意事项 1. **通道维度匹配** 需确保插入位置的输入通道数与CBAM初始化参数一致,例如`[CBAM, [64]]`对应前层输出通道为64的情况[^4] 2. **位置选择建议** - 建议在高层特征图(如最后三个C3模块后)添加CBAM - 可参考YOLOv8的集成位置选择策略[^2] 3. **训练调参** - 初始学习率建议降低为基准的0.8倍 - 训练epoch数增加10-15% #### 三、效果验证 在COCO数据集上的典型改进效果: $$ \text{mAP}_{0.5} \uparrow 2.8\%,\ \text{mAP}_{0.5:0.95} \uparrow 3.1\% $$ (改进效果参考YOLOv8的CBAM实验结果[^1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值